Impact of Ride-Sharing in New York City

This project aims to develop a comprehensive holistic model of urban transportation demand given multiple available modes, including for-hire vehicles and their shared options. The model will enable assessment of the impact of shared mobility on urban transportation mode choice, which can be further translated into economic, social, and environmental impacts.

Development of Mountable Sensors to Improve Bicyclist Safety

These new sensors are focused on obtaining data about the bicyclist’s behavior, which will complement the current data and contribute to new findings. An iOS platform is also being developed to track the devices and visualize real-time data collected with them. More units are expected to be implemented into the device in the near future for crowdsourcing.

Evaluation of New Features at MTA New York City Transit’s Accessible Station Lab

C2SMART researchers are working under the direction of NYCT staff in administering surveys/conducting interviews and collecting data from users of the proposed features/installations. As the data analysis partner, C2SMART is collecting and analyzing the collected data to develop analytics to assist NYCT in evaluating the performance of each of the features being tested as part of the Accessible Station Pilot.

Learning to Drive Autonomously

Autonomous vehicles (AV) and connected vehicles (CV) technology has been much of the focus of transportation industry lately, and they will likely make a vast impact on the future of transportation systems. This project will combine AV and CV technologies for connected and autonomous vehicles (CAVs) to reduce congestion and improve network performance and safety by developing new tools and methods using reinforcement learning and nonlinear and optimal control techniques.

Development and Tech Transfer of an Integrated Robust Traffic State and Parameter Estimation and Adaptive Ramp Metering Control System

Dr. Zhou and Dr. Ozbay found that, if the traffic flow parameters are time-varying and/or the knowledge of these parameters are biased, the performances of a traffic state estimator that has assumed them to be known and fixed-valued can be significantly downgraded. Moreover, only augmenting these parameters into the state vector and then resorting to nonlinear recursive estimation techniques such as extended Kalman filter (EKF) cannot solve the issue. This is because, under a CTM-based traffic estimator, the critical density is unobservable under free-flow conditions, and hence biased initial knowledge of the critical density can cause false switching of the working model of the estimator and distort the estimation afterward.

Work Zone Safety III: Calibration of Safety Notifications through Reinforcement Learning and Eye Tracking

According to the Federal Highway Administration (FHWA), work zone fatalities at road construction projects account for up to 3% of all workplace fatalities in a given year. We propose adding new functionality to the current VR platform to track the subjects’ attention through his/her head-movement and eye-movement to infer his/her gaze pattern. With the introduction of this method to measure the subject’s attention, we plan to capture additional critical information about the decision a worker makes.