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Multi-agent Simulation-based  

C2SMART Center is a USDOT Tier 1 University Transportation Center 
taking on some of today’s most pressing urban mobility challenges. 
Using cities as living laboratories, the center examines transportation 
problems and field tests novel solutions that draw on unprecedented 
recent advances in communication and smart technologies. Its 
research activities are focused on three key areas: Urban Mobility and 
Connected Citizens; Urban Analytics for Smart Cities; and Resilient, 
Secure and Smart Transportation Infrastructure. 

Some of the key areas C2SMART is focusing on include: 

Disruptive Technologies 

We are developing innovative solutions that focus on emerging 
disruptive technologies and their impacts on transportation systems. 
Our aim is to accelerate technology transfer from the research phase 
to the real world. 

Unconventional Big Data Applications 

C2SMART is working to make it possible to safely share data from field 
tests and non-traditional sensing technologies so that decision-makers 
can address a wide range of urban mobility problems with the best 
information available to them. 

Impactful Engagement 

The center aims to overcome institutional barriers to innovation and 
hear and meet the needs of city and state stakeholders, including 
government agencies, policy makers, the private sector, non-profit 
organizations, and entrepreneurs. 

Forward-thinking Training and Development 

As an academic institution, we are dedicated to training the workforce 
of tomorrow to deal with new mobility problems in ways that are not 
covered in existing transportation curricula. 

Led by the New York University Tandon School of Engineering, 
C2SMART is a consortium of five leading research universities, 
including Rutgers University, University of Washington, the University 
of Texas at El Paso, and The City College of New York. 

c2smart.engineering.nyu.edu 
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Executive Summary 

To grapple with emerging technologies, city agencies need to evaluate operational scenarios 

imposed by private sector (e.g. what is the impact of e-hail ride-sourcing on traffic congestion?) 

or when considering what-if scenarios related to new operating policies. This is especially 

important because technologies companies developing public products need to gain approval 

from public agencies before they can deploy in that region. As such, public agencies need to 

evaluate the product’s impact on the community. Transportation products like policies and 

operating technologies face different challenges than conventional technologies because of their 

public nature. Transportation technologies deployed to the field can be both financially and 

socially costly, as unproven technologies may end up costing lives if something goes wrong. 

Furthermore, even a successful deployment in one city may not be indicative that the same 

technology can work well in another city because each city is a different market. Prototyping 

serves to verify that a technology works, but it does not consider how the technology may impact 

a community given the behavior of its population. This gap in the innovation process for 

transportation technologies suggests a need for a deployment testing framework that falls 

between prototyping and field piloting. Existing tools like NYBPM are designed more for long 

term capital planning than for quick response evaluation of operating policies introduced by 

emerging transportation technologies, which are often dynamic and impact travelers’ travel 

preferences throughout the day. Congestion pricing, algorithms for microtransit or bikeshare 

rebalancing, electric vehicle fleets with dynamic fast charging activities all impact travelers’ 

choices throughout the day, which in turn impact the dynamics of traffic congestion throughout 

the day. These interactions are currently not addressed by any existing tools in NYC, nor in most 

cities around the world. 

One of the missions of C2SMART is to help cities around the country better understand the 

transferability of transportation technologies. For this purpose, we initiated two yearlong 

projects from 2018 – 2020 to initiate a new virtual test bed ecosystem: 

• 2018 – 2019: Phase I: Open Source Multi-Agent Virtual Simulation Testbed  

• 2019 – 2020: Phase II: Development and Tech Transfer of Multi-Agent Simulation Testbed 

This report covers the findings of both years’ projects. The objective of these two projects is to 

develop an initial architecture and virtual test bed that can be replicated in future projects to 

other cities in the C2SMART consortium and partners. The vision is for a “Network of Living Labs”, 
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which is tentatively dubbed as C2SMART’s “NOLL-Edge” system. Its goal is to be used by city 

agencies to evaluate emerging technologies and operating policies using a consistent platform so 

that their effects can be quantified. In the long term, cities may opt to use this test bed as a 

means of certification for policies and technologies (e.g. NOLL-Edge-certified that policy A can 

achieve X% welfare improvement in NYC or reduce congestion by Y% for population segments 1, 

2, 3, etc.). The test bed system is integrated within an Urban Data Observatory. Users of the 

virtual test bed are divided into 3 groups: (a) agencies that want to evaluate a scenario; (b) 

technology companies that want to submit their technologies for deployment testing; (c) 

research partners who want to conduct research using data from the system. Users need to be 

able to query data, define scenarios with C2SMART for which comparisons to baseline scenario 

are made, submit extensions that capture new technologies to use in a scenario, or develop a 

new model that better fits the needs of the scenario to be evaluated. 

We developed an initial test bed for NYC using MATSim, a Multi-Agent Transportation 

Simulation. MATSim models transportation networks using a mesoscopic simulation based on 

cellular automata. It is open source and many extensions have been quickly developed for it to 

handle a wide assortment of policy needs: autonomous vehicles, emissions modeling, parking, 

freight, electric vehicles, bikeshare, etc. MATSim makes use of a synthetic population which is 

useful for modeling heterogeneous population segments. It incorporates a day-to-day 

adjustment process that can reflect learning from the population to achieve a social equilibrium 

under each technology scenario. 

Based on this overarching goal, we set out on these two projects with the following set of 

objectives: 

• Create an underlying synthetic population for NYC for a recent base year (2016) that 

includes key emerging modes like Citi Bike and for-hire vehicles (FHVs) like Uber/Lyft/Via; 

• Construct, calibrate, and validate a MATSim model of NYC using the synthetic population; 

• Use the synthetic population and MATSim models to evaluate a set of scenarios for which 

existing tools are not equipped: 

o The now-defunct plan to establish an Amazon headquarters in Long Island City 

and the impact resulting from trips taken by professional service employees to 

that area; 

o Citi Bike expansion plan and the resulting effect on travelers, which is not currently 

modeled as a mode in any existing travel demand tool for NYC; 
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o Congestion pricing for Manhattan, and its impact on traffic propagation into and 

out of Manhattan by time of day; 

o Brooklyn-Queens Connector (BQX), a proposed streetcar service for which there 

is no broad consideration of demand for its service at a citywide level. 

• Exploration of other features of MATSim: 

o Mobility-on-demand-based autonomous vehicle fleets; 

o Bike-share; 

o Multimodal travel; 

o More realistic traffic flow modeling on the links.  

We used the PopGen 2.0 (MARG,2016) to generate the representative synthetic population 

while controlling and matching both household-level and person-level attributes. We generated 

a population of 8.24 million people for the base year of 2016, compared to a total true population 

of 8.34 million people. There was an average of 4% difference between the synthetic population 

and the Longitudinal Employer-Household Dynamics 2016 data. Travel agendas were replicated 

from the 2010/2011 Regional Household Travel Survey, minus the mode for each trip. Over 30 

million trips were synthesized. Modes were synthesized using a mode choice model.  

A tour-based nested logit model was developed and calibrated using the 2010/2011 RHTS 

for driving, walking, carpool, public transit (both subway and bus), taxi, and bike. For-hire vehicles 

(e.g. e-hail, ridesourcing) and Citi Bike modes were estimated by perturbing the existing model 

with new modes to fit count data in 2016 using least squares. An additional smartphone 

ownership choice model was estimated to use as an attribute or alternative availability indicator. 

The model was estimated for two population segments: people living in Manhattan and those 

living outside Manhattan. The value of time for the Manhattan segment was estimated to be 

$29/h.  The model was validated against the 2017 Citywide Mobility Survey from the New York 

City Department of Transportation (NYC DOT), and found to fit well.  

The completed synthetic population was then fed into MATSim simulation along with data 

for the road network from OpenStreetMap, transit schedule from GTFS, and other simulation-

level configuration parameters. Gateway trips were added to account for origins outside of NYC 

entering through the city, which account for 1.18M additional population and 3.04M trips. The 

nested logit model parameters were converted to equivalent multinomial logit model 

parameters to fit MATSim’s score function framework. The road network was calibrated further 

by speed and capacity, differentiated by time of day as well as by arterial or freeway. The speeds 

were initially calibrated against INRIX data while the capacities were calibrated against the hourly 
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traffic counts of 19 bridges and tunnels around the city. The resulting model, called MATSim-NYC, 

had a relative difference on average of 7.2% for the freeways and 17.1% for the arterials. The 

simulated screenlines along the bridges and tunnels had an average relative difference of 25.9% 

for the Hudson screenline and 2.6% for the East River screenline, with an overall average relative 

difference over different time periods of 10.3%. Validation of MATSim-NYC was conducted using 

transit ridership across ten of the highest volume ridership and hourly volumes of 15 major 

locations in NYC. The transit stations show a difference in total daily ridership of 8% while the 

median difference for the traffic volumes is 29%.  

The calibrated synthetic population and MATSim-NYC model were then applied to create a 

baseline scenario from which we analyzed four different scenarios. The first two scenarios are 

analyzed using the synthetic population. Scenario 1 looked at building the office space for the 

Amazon HQ in Long Island City as originally planned, showing that it would increase morning peak 

hour trips from 5000 to 8000 while expanding taxi and FHV demand to/from that location by 

more than four times. Scenario 2 studies the Citi Bike expansion which predicts the number of 

daily trips would increase from 47K daily trips to 91K daily trips.  

The latter two scenarios are analyzed using MATSim-NYC. Scenario 3 is the congestion pricing 

plan for NYC. A $9.18 peak period pricing plan analyzed by RPA is also looked at. Our model 

predicts twice the number of cars shifted away (127,000) than RPA (59,000); most of which are 

absorbed by transit. Revenues are consistent. In addition, MATSim-NYC allows us to measure the 

impact on consumer surplus, suggesting benefits for Manhattanites that are on average 54% 

higher than for non-Manhattanites. This warrants more careful redistribution of the pricing 

revenue toward outer boroughs transit services. We can also see to which modes the trips shift: 

15% of car trips shift to transit and 10% shift to FHV and taxi. Scenario 4 looks at the Brooklyn-

Queens Connector (BQX) and predicts a higher daily ridership (112K) than the original BQX study 

(50,000). We also predict a peak load during morning peak hours of 1400 passengers/hour along 

with a prediction of 16% of BQX riders shifting from car mode (18K cars).  

A summary of other extensions are also provided: we developed more realistic traffic flow 

models within the simulation; we investigated the use of an autonomous mobility-on-demand 

(AMoD) extension for MATSim-NYC; we reviewed tools available for handling multimodal routing 

and bike-share in MATSim; and we planned out next steps for integrating the test bed in the 

urban data observatory.  
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The projects have resulted in presentations given at University of Maryland, ETH Zurich, and 

ICTPA, as well as a webinar covering application to congestion pricing and COVID-19. Four papers 

were prepared directly from the tool development; several other papers were also prepared in 

conjunction while studying multimodal transport and emerging technologies (12 in total). The 

work has supported two other projects at C2SMART, supported several PhD students for portions 

of their dissertations, several MS theses, a Center for Urban Science and Progress (CUSP) 

capstone, the The NYU Tandon School of Engineering's Applied Research Innovations in Science 

and Engineering (ARISE) program, graduate and undergraduate courses by Professor Chow, the 

NYU Tandon Research Expo presented to the public, and integrated into courses and training for 

NYCDOT and ITS-NY members. 
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Section 1: Introduction 

 

1.1. Background 

Cities are facing a growth in new technologies and operational models due to the rise of the 

Internet of Things (IoT) within the “smart cities” context. A fine example of the impact this 

paradigm shift has on mobility options is shown in Figure 1 under a Mobility-as-a-Service (MaaS) 

paradigm. Whereas traditional transportation planning tools focused on evaluation of roadway 

infrastructure and public transit alternatives, emerging mobility services and technologies play a 

much bigger role (Chow, 2018). 

 

Figure 1. Spectrum of modes available in a MaaS paradigm (source: Wong et al., 2020). 

To grapple with these emerging technologies, city agencies need to evaluate operational 

scenarios imposed by private sector (e.g. what is the impact of e-hail ride-sourcing on traffic 

congestion?) or when considering what-if scenarios related to new operating policies. This is 

especially important because technologies companies developing public products need to gain 

approval from public agencies before they can deploy in that region. As such, public agencies 

need to evaluate the product’s impact on the community. 
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How should government agencies test such products? For most engineered products, the 

evaluation and testing phases of a product out of research and development is either prototyping 

or deployment testing in the field. An illustration of these kinds of efforts in deployment testing 

is shown in Figure 2, which shows a set of pilot public-private partnership projects in various parts 

of the country. It includes several funded by the Federal Transit Administration to test the 

deployment of new technologies and operating policies, called the MOD (mobility-on-demand) 

Sandbox program. 

 

Figure 2. Selected transit partnerships, several of which are from the MOD Sandbox program 

(source: GAO, 2018). 

However, transportation products like policies and operating technologies face different 

challenges than conventional technologies because of their public nature. As illustrated in Figure 

3, transportation technologies deployed to the field can be both financially and socially costly, as 

unproven technologies may end up costing lives if something goes wrong. Furthermore, even a 

successful deployment in one city may not be indicative that the same technology can work well 
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in another city because each city is a different market. Prototyping serves to verify that a 

technology works, but it does not consider how the technology may impact a community 

considering the behavior of its population. This gap in the innovation process for transportation 

technologies suggests a need for a deployment testing framework that falls between prototyping 

and field piloting. The lack of a consistent deployment modeling and testing phase between 

prototyping and deployment pilot can lead to higher failure rates in emerging technologies. As 

we have seen, companies like Chariot, Bridj, ReachNow, Bird, among others (see Chow, 2018, for 

other examples), have all failed to operate sustainably. An ex post analysis of Kutsuplus 

microtransit suggests the operating conditions might not have been adequate to maintain such 

services (Haglund et al., 2019).  

 

Figure 3. Illustration of unique aspects of innovation process for transportation technologies. 

As an example, consider New York City. When new mobility providers wish to enter the 

market, they need approval from city officials. The officials have at their disposal a limited set of 

tools to evaluate the impact of the technology on the city. One prominent tool is the regional 

travel demand model from the New York Metropolitan Transportation Council (NYMTC), called 

the New York Best Practice Model (NYBPM). The NYBPM study area includes 28 counties of New 

York, New Jersey and Connecticut and both road and public transit network are incorporated. It 

took about two years (from mid-May 2013 to mid 2015) to update the base year of the model to 

2010. The 2012 base year update was expected to be ready by end of 2018. Even the latest 

version of NYBPM (2012) is too old to capture the dramatic growth of FHV since 2015. NYBPM is 

designed more for long term capital planning than for quick response evaluation of operating 

policies introduced by emerging transportation technologies which are often dynamic and impact 

travelers’ travel preferences throughout the day.  
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Another available tool is the Balanced Transportation Analyzer (BTA) developed by Nurture 

Nature Foundation (NNF). It is an intricate spreadsheet model that can analyze the impacts of 

transportation fares or other variables. The Regional Planning Association (RPA) published a 

report about the congestion pricing analysis in Manhattan using this model. However, this model 

does not capture spatiotemporal interactions within the city and can only provide a city-level 

assessment of a congestion pricing plan.  

Congestion pricing, algorithms for microtransit or bikeshare rebalancing, electric vehicle 

fleets with dynamic fast charging activities all have one thing in common: they impact travelers’ 

choices throughout the day, which in turn impact the dynamics of traffic congestion throughout 

the day. These interactions are currently not addressed by any existing tools in NYC, nor in most 

cities around the world.  

1.2. Research objectives 

One of the missions of C2SMART is to help cities around the country better understand the 

transferability of transportation technologies. For this purpose, we initiated two yearlong 

projects from 2018 – 2020 to initiate a new virtual test bed ecosystem: 

• 2018 – 2019: Phase I: Open Source Multi-Agent Virtual Simulation Testbed  

• 2019 – 2020: Phase II: Development and Tech Transfer of Multi-Agent Simulation Testbed 

This report covers the findings of both years’ projects. The objective of these two projects is 

to develop an initial architecture and virtual test bed that can be replicated in future projects to 

other cities in the C2SMART consortium and partners. The vision is for a “Network of Living Labs”, 

which is tentatively dubbed as C2SMART’s “NOLL-Edge” system. Its goal is to be used by city 

agencies to evaluate emerging technologies and operating policies using a consistent platform so 

that their effects can be quantified. In the long term, cities may opt to use this test bed as a 

means of certification for policies and technologies (e.g. NOLL-Edge-certified that policy A can 

achieve X% welfare improvement in NYC or reduce congestion by Y% for population segments 1, 

2, 3, etc.). A conceptual use case diagram of the system is provided in Figure 4.  
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Figure 4. Conceptual use case diagram of NOLL-Edge system. 

The test bed system is integrated within an Urban Data Observatory. Users of the virtual test 

bed are divided into 3 groups: (a) agencies who want to evaluate a scenario; (b) technology 

companies that want to submit their technologies for deployment testing; (c) research partners 

who want to conduct research using data from the system. Users need to be able to query data, 

define scenarios with C2SMART for which comparisons to baseline scenario are made, submit 

extensions that capture new technologies to use in a scenario, or develop a new model that 

better fits the needs of the scenario to be evaluated. An illustrative screenshot is shown in Figure 

5 and a screenshot of a data query interface is shown in Figure 6. 
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Figure 5. Illustrative screenshot of the MATSim interface. 

 

Figure 6. Illustrative screenshot of OD data query tool (NTA mode). 

The requirements for the virtual test bed system are listed as follows: 

• It needs to recognize dynamic traffic propagation to capture traffic technologies and 

policies like congestion pricing; 

• It needs to recognize activity scheduling behavior of travelers (see Kang et al., 2013); 
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• It needs to recognize different segments of travelers in the population, e.g. low and high 

income, age groups, residents of different socioeconomic backgrounds; 

• It needs to be flexible enough to adapt to new emerging technologies. 

Based on these requirements, we chose to develop the initial test bed for NYC using MATSim, 

a Multi-Agent Transportation Simulation. MATSim models transportation networks using a 

mesoscopic simulation based on cellular automata. It is open source and many extensions have 

been quickly developed for it to handle a wide assortment of policy needs: autonomous vehicles, 

emissions modeling, parking, freight, electric vehicles, bikeshare, etc. MATSim makes use of a 

synthetic population which is useful for modeling heterogeneous population segments. It 

incorporates a day-to-day adjustment process that can reflect learning from the population (see 

Djavadian and Chow, 2017a,b) to achieve a social equilibrium under the technology scenario.  

It also has many limitations. The base platform does not directly incorporate freight 

populations, nor parking, nor easily account for shared lanes between buses and passenger 

vehicles. It doesn’t handle dynamic tolling, bikeshare, or multimodal trips. This is more reason to 

conduct a study to test its capabilities and limitations in modeling different policies and emerging 

technologies. 

Based on this overarching goal, we set out on these two projects with the following set of 

objectives: 

• Create an underlying synthetic population for NYC for a recent base year (2016) that 

includes key emerging modes like Citi Bike and for-hire vehicles (FHVs) like Uber/Lyft/Via; 

• Construct, calibrate, and validate a MATSim model of NYC using the synthetic population; 

• Use the synthetic population and MATSim models to evaluate a set of scenarios that 

existing tools are not equipped to evaluate: 

o The now-defunct Amazon headquarters location plan in Long Island City and the 

impact of increased trips to that area by professional service employees;  

o Expansion plan by Citi Bike, not currently modeled as a mode in any existing travel 

demand tool for NYC, and the resulting effect on travelers; 

o Congestion pricing for Manhattan, which requires evaluating its impact on traffic 

propagation into and out of Manhattan by time of day; 

o Brooklyn-Queens Connector (BQX), a proposed streetcar service for which there 

is no broad consideration of demand for its service at a citywide level. 

• Exploration of other features of MATSim: 

o Mobility-on-demand-based autonomous vehicle fleets; 



 

  Multi-agent virtual simulation test bed ecosystem   8 

o Bike-share; 

o Multimodal travel; 

o More realistic traffic flow modeling on the links.  

 

1.3. Organization of report 

The rest of the report is organized as follows. Section 2 provides an overview of MATSim and 

agent-based modeling needed to work with the subsequent sections. Section 3 introduces the 

development of the eight-million synthetic population. The calibration of MATSim baseline 

model is demonstrated in Section 4 and the results of scenario analyses are discussed in Section 

5. Section 6 presents the findings of the exploratory efforts on other features of MATSim as well 

as an overview of the Urban Data Observatory under which the NOLL-Edge system would reside. 

Section 7 concludes the report and summarizes the tech transfer from this project, which 

includes future plans to make the system accessible to stakeholders and further grow the system.  
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Section 2: Overview of agent-based simulations and MATSim 

2.1 Agent-Based Modeling and Simulation 

Agent-Based Modeling and Simulation (ABMS) (von Neumann, 1966; Bonabeau, 2002) can 

be used to model complex heterogeneous agents with interaction rules and agent learning. ABMS 

has been applied to many problems in the transportation area (see Dia, 2002; Hidas, 2002; Zhang, 

2006; Rieser et al., 2016). Macal and North (2006) classified the applications of ABMS into two 

categories: “Small, elegant, minimalist models” and “Large-scale decision-support systems”. The 

latter is more suitable to facilitate the emerging needs of policymakers. Djavadian and Chow 

(2017a,b) demonstrated how agent-based simulation can be used to capture market 

equilibration for dynamic transportation systems, many of which feature in MaaS systems. An 

illustration of this framework is shown in Figure 7. In the figure, FTS stands for “flexible transport 

systems” which represent dynamic service systems that may include user and operator decisions. 

The framework is shown to reach a stochastic user equilibrium for populations that are sampled 

sufficiently (Djavadian and Chow, 2017a), which provides a basis for agent-based simulations of 

such transportation systems.  

 

Figure 7. Framework for day-to-day adjustment processes for evaluating market equilibrium 

of dynamic transportation systems with user and operating learning (source: Djavadian and 

Chow, 2017b). 
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There are several well-known ABMS platforms designed to support decision-making, 

including but not limited to Transportation Analysis and Simulation System (TRANSIMS) (Nagel et 

al., 1999, Multi-Agent Transport Simulation Toolkit (MATSim) (Balmer et al., 2009), Sacramento 

Activity-Based Travel Demand Simulation Model (SACSIM) (Bradley et al., 2012) Simulator of 

Activities, Greenhouse Emissions, Networks, and Travel (SimAGENT) (Goulias et al., 2011), and 

Polaris (Auld et al., 2016), SimMobility (e.g. Nahmias-Biran et al., 2019). TRANSIMS was a first-

generation tool developed by the Federal Highway Administration (FHWA), after which its 

creators took the lessons learned from it to produce the next generation tool MATSim.  

These agent-based simulation tools typically assume a single population of agents, so the 

results of their simulations may not necessarily converge toward a theoretical stochastic user 

equilibrium described in Djavadian and Chow (2017a), but they can provide an approximation 

especially given a large enough synthetic population that allows for a sufficiently broad range of 

agents to be simulated. To illustrate, we ran MATSim over four different runs at 4% of population.  

As shown in Table 1, the sample standard deviation over the four runs are quite small, suggesting 

that only one run is necessary.  

 

Table 1. Sensitivity tests of stability of MATSim predicted trips per mode over four runs 

 car carpool transit taxi bike walk Citi Bike FHV 

Mean 28567 2516 208042 19907 8168 126431 1022 18497 

Std dev. 190 43 323 219 61 97 37 222 
 

 

2.2 MATSim Overview 

MATSim is an open-source simulation toolkit implemented in Java. It has three desirable 

features that make it unique among other agent-based simulations. The first is the use of a 

synthetic population that includes activity schedules so that simulation incorporates activity 

scheduling behavior. The role of MATSim as a simulation of activity scheduling is discussed at 

great length in Chapter 4 of Chow (2018). The issue in many activity scheduling models is the lack 

of sensitivity to spatial temporal constraints reflected at a large scale in the population, a 

drawback discussed in Chow and Recker (20120 and Chow and Djavadian (2015). MATSim 



 

  Multi-agent virtual simulation test bed ecosystem   11 

provides a feedback loop by using a day-to-day adjustment process, although the adjustment 

process is simplified with a heuristic (a genetic algorithm) and the use of only a single population. 

The second desirable feature is that MATSim can simulate large-scale scenarios using a 

spatial queue model (Cetin et al., 2003) to simulate the traffic dynamics instead of car-following 

and lane-changing models (Zheng et al., 2013). To shorten the computation time, MATSim also 

adopts parallel computation for the spatial queue model. However, there are some shortcomings 

of the spatial-queue model in MATSim. First, the backward wave speed may not be realistic. Since 

vehicles leave the link one by one as a queue, when the previous vehicle leaves the link, the whole 

link would be available immediately and the backward wave speed is nearly the length of the link 

per time step. The intra-link interactions among vehicles are ignored. Second, factors like traffic 

signal, pedestrians, and on-street parking are ignored by the default MATSim model. In a complex 

urban road network like NYC, traffic flows are significantly affected by those factors. These two 

shortcomings are addressed in the project.  

Another advantage of MATSim is its numerous extensions as an open-source platform, which 

makes it easier for users to simulate and evaluate different scenarios. There are many 

applications of MATSim around the world, including Berlin (Neumann, 2016; Ziemke, 2016), 

Zurich (Rieser-Schu ̈ssler et al., 2016), Singapore (Erath and Chakirov, 2016) among others. These 

applications prove that MATSim is suitable for analyzing the complex urban transportation 

system in large cities. MATSim has also been used to evaluate several emerging technologies, 

including the following examples: 

• Autonomous vehicle fleet (Hörl et al., 2019) 

• Carshare (Ciari et al., 2016) 

• Urban air mobility (Rothfield et al., 2018) 

• Demand-responsive transit (Cich et al., 2017) 

• MaaS (Becker et al., 2020) 

As an agent-based simulation, MATSim can capture the behavior of each agent and the 

interaction between agents and transportation system. Each agent refers to an individual traveler. 

Traveler behavior is represented by a series of activities, travel modes and routes. MATSim uses 

an iterative framework for simulation, as shown in Figure 8. The goal of the iterative framework 

is to find the equilibrated state of the system. The overall simulation procedures are: 

• Put the agents with the initial travel plans into MATSim and simulate their mobility in the 

physical system.  
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• Calculate the score (utility) of each agent’s executed plan. 

• Randomly select a certain proportion of agents and mutate their plans. Go back and re-run 

the simulation until the agents’ scores converge. 

 

Figure 8. Framework of simulation in MATSim (Horni et al., 2016). 

The output of MATSim has very high resolution. It contains the executed plan of all the 

agents. Many useful results can be extracted from this output, such as: 

• Aggregated-level mode share 

• Individual mode shift in a specific scenario 

• Departure time distributions across a day 

• Trip travel distance distributions per mode 

• Average hourly speed distribution across a day per link 

• Transit ridership profile per line 

• Passenger flow distribution per station 

• Traffic count at specific link 
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Section 3: Synthetic population 

There are three major steps to develop a synthetic population for NYC: population synthesis, 

agenda assignment and travel mode determination. All three steps are introduced in detail in the 

rest of this section.  

 

3.1 Population synthesis 

We used the PopGen 2.0 (MARG,2016) to generate the representative synthetic population 

while controlling and matching both household-level and person-level attributes. PopGen 2.0 

uses an enhanced iterative proportional updating (IPU) algorithm (Konduri,2016) to control the 

distribution of population attributes at different spatial layers simultaneously. 

 The population attributes are distributed in both county level as well as Traffic Analysis Zone 

(TAZ) level in the NYC model. Available attributes are collected from the American Community 

Survey (ACS), NYMTC 2040 Socioeconomic and Demographic (SED) Forecasts, and Longitudinal 

Employer-Household Dynamics 2016 (LEHD), as shown in Table 2.  Some data from ACS and LEHD 

are based on the Blockgroup spatial resolution, which is inconsistent with our default TAZ spatial 

resolution. We matched the Blockgroup to TAZ to keep the consistency of the data. If one 

Blockgroup is shared by more than one TAZ, we assign the attributes from ACS and LEHD to the 

TAZ according to its proportion of area among the overlapped TAZs.  

We generated a population of 8.24 million people for the base year of 2016 with the 

attributes given in Table 2, compared to a total true population of 8.34 million people (SED, 2016). 

This resulted in 30,991,820 average daily trips made by the synthetic population in 2016. The 

computation time was 12 minutes and 35 seconds on an Intel Xeon 3.5 GHz with 125 GB RAM.  

The distribution of employment industry proportion from the synthetic population was 

compared to LEHD data shown in Figure 9. The Educational services industry has the largest 

difference as 9% lower, with the average difference 4%. The distribution of personal information 

was also validated to SED forecast data (Table 3). 
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Table 2. Attributes available from ACS, LEHD and SED data 

Data Source Attributes Description 

ACS Person Age Age group of the person 

Person School Enrollment Status If student, person’s academic level 

Person Gender Male or female 

Household Size Number of people in the household 

Household Income Income group of the household 

Household Car Ownership Number of cars owned by the household 

LEHD Person Work Industry If working, person’s employment industry according to NAICS 

SED Employment Worker or not 

Total Population by TAZ Resident population in TAZ 

Total Population By County Resident population in County 

 

 

 

Figure 9. Comparison of the synthesized and LEHD distributions of the population 

employment industry. 
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Table 3. Validation results of the synthetic population comparing with SED data by zone 

Attributes Maximum % Difference Mean % Difference 

Person Age 5 2 

Person School Enrollment Status 9 4 

Person Gender 6 4 

Person Work Industry 4 3 

Employment 7 4 

Total Population by TAZ 3 2 

Total Population by County 3 2 

 

3.2 Agenda assignment 

The travel agenda of a person consists of a series of activities and trips. The agents’ agendas 

have multiple dimensions, such as activity purpose, destination choice, departure time choice, 

and duration choice. We only model tour-based mode choice; the other dimensions are simply 

assigned from the 2010/2011 Regional Household Travel Survey (RHTS), which includes 35,207 

agendas. There are more than 30 million trips in total and 3.5 trips per capita. We assigned RHTS 

agendas to the synthetized population using socio-demographic information. There are two 

assignment considerations: home location and occupation.  

Generally, every person in the synthetic population is assigned an agenda of a RHTS sample 

individual from the same TAZ with the same type of occupation, but some TAZs have few or no 

responses. The sampling pool for agents drawn from TAZs with less than 15 sample agendas is 

extended to the Public Use Microdata Area (PUMA) level where the TAZ belongs.  

Travel patterns are also dependent on the agent’s occupation. Four categories of occupation 

are defined: K-12 (kindergarten to 12th grade) students, university students, workers, and 

retiree/unemployed. K-12 students only receive school agendas, university students receive 

university agendas, workers receive work agendas, and retirees and the unemployed receive only 

secondary activity agendas. 

Based on these two criteria, every person is given an agenda. If an agenda is drawn from the 

PUMA level, the start location for the first trip of the day and the end location of the last trip of 

the day is adjusted to the home location of its agent. A mode choice model is proposed in the 
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next section to simulate the modes chosen for each trip in the agendas of the synthetic 

population. 

 

3.3 Travel mode determination 

3.3.1 Model specification 

A tour-based nested logit model is proposed to determine the travel mode choices of the 

synthetic population. A tour consists of a series of linked trips of which the beginning of the first 

trip and the end of the last trip are the same location. Here we assume all tours are independent 

from each other. Furthermore, some long tours consist of a series of “sub-tours”. A sub-tour is 

part of a tour starting and ending at the same location. The tours and subtours are illustrated in 

Figure 10, which shows the possibility for multiple tours from home (H). Each home-based tour 

is decided as car or non-car. For non-car tours, the modes of each trip are decided independently. 

The availability of car mode in a subtour (e.g. A1-A3-A1) depends on whether the greater tour 

used a car or not. The tour-based design captures the interdependency among trips and the car 

consistency across a tour, compared to the traditional trip-based model.  

 

 

Figure 10. Illustration of three tours from an individual: two home-based tours (H-A1-A2-H, H-

A4-H), one non-home-based subtour (A1-A3-A1). 

 

The structure of the nested logit model is shown in Figure 11. The upper nest determines 

driving or not in the tour level, while the lower nest determines the mode choice in the trip level 

H 

A1 

A2 A4 

A3 
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based on the choice of non-driving in the upper level. The model is initially estimated from the 

2010/2011 RHTS ignoring modes 6 and 7. This difference reflects the For-Hire-Vehicle (FHV) and 

Citi Bike, which are not incorporated by RHTS.  

 

 

Figure 11. Structure of nested logit model. 

 

In the driving nest 𝑁1, there is only driving mode for the whole tour. In the non-driving nest 

𝑁2, we denote a choice set 𝐽 = {1,2,3,4,5} corresponding to non-driving modes labeled in Figure 

11.  

To handle the difference in units between the lower level (per trip) and upper level (per tour), 

the expected tour-level utility of 𝑁2 is calculated according to Eq. (3.1).  

𝐸[𝑉𝑁2,𝑖] =
1

𝜇
∑ ln(∑𝑒𝜇𝑉𝑖𝑗𝑘

𝐽

𝑗=1

)

𝐾𝑖

𝑘=1

 

 

(3.1) 

where 𝑖 denotes tour 𝑖, 𝐾𝑖 is the number of trips in tour 𝑖, 𝐽 represents the non-driving choice set, 

and 
1

𝜇
 is the scale factor between nests. 𝑉𝑖𝑗𝑘 is the utility of mode 𝑗 of trip 𝑘 in tour 𝑖. 

With respect to the utility function of each mode, the main attributes we consider are in-

vehicle travel time and travel cost. The utility functions of the upper level alternatives are shown 

in Eq. (3.2a) (driving) and (3.2b) (non-driving). Eq. (3.3a) shows the utility functions of the lower 
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level non-driving modes except for public transit; Eq. (3.3b) shows the function for public transit. 

The alternative specific constant for carpool is set to zero, i.e. 𝛽1,𝐶 = 0. 

𝑉𝑑𝑟𝑖𝑣𝑖𝑛𝑔,𝑖 = ∑ (𝛽𝑑𝑟𝑖𝑣𝑖𝑛𝑔,𝐶 +
1

𝜇
× 𝛽𝑐𝑜𝑠𝑡 × 𝐶𝑜𝑠𝑡𝑖,𝑘,𝑑𝑟𝑖𝑣𝑖𝑛𝑔)

𝐾𝑖

𝑘=1

 
 

(3.2a) 

𝑉𝑛𝑜𝑛−𝑑𝑟𝑖𝑣𝑖𝑛𝑔,𝑖 = 𝐸[𝑉𝑁2,𝑖] (3.2b) 

𝑉𝑗,𝑖,𝑘 = 𝛽𝑗,𝐶 + 𝛽𝑐𝑜𝑠𝑡 × 𝐶𝑜𝑠𝑡𝑖,𝑘,𝑗 + 𝛽𝑡𝑖𝑚𝑒,𝑗 × 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗, 𝑗 ∈ 𝐽\{1,2} (3.3a) 

𝑉2,𝑖,𝑘 = 𝛽2,𝐶 + 𝛽𝑐𝑜𝑠𝑡 × 𝐶𝑜𝑠𝑡𝑖,𝑘,2 + 𝛽𝑡𝑖𝑚𝑒,2 × (𝑇𝑖𝑚𝑒𝑖,𝑘,2 − 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑑𝑟𝑖𝑣𝑖𝑛𝑔)

+ 𝛽𝐴𝑇 × 𝐴𝑇𝑖,𝑘 + 𝛽𝐸𝑇 × 𝐸𝑇𝑖,𝑘 + 𝛽𝑊𝑇 × 𝑊𝑇𝑖,𝑘 + 𝛽𝑓 × 𝑓𝑖,𝑘 
(3.3b) 

𝛽𝑑𝑟𝑖𝑣𝑖𝑛𝑔,𝐶 is the alternative specific constant of driving and 𝐶𝑜𝑠𝑡𝑖,𝑘,𝑑𝑟𝑖𝑣𝑖𝑛𝑔 is the cost of driving in 

tour 𝑖. For all the cost attributes, we use the same coefficient in the non-driving nest 𝑁2 because 

people have the same perception of monetary cost. The 
1

𝜇
 is the scale factor between nests. In 

Eq. (3.3), 𝐶𝑜𝑠𝑡𝑖,𝑘,𝑗 is the 𝑗 for trip 𝑘 in tour 𝑖, 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 is the in-vehicle travel time (hr) of 𝑗 for trip 

𝑘 in tour 𝑖. 𝑊𝑇𝑖,𝑘 denotes the wait time (hr) during transfer, 𝐴𝑇𝑖,𝑘 for transit access time (hr), 

𝐸𝑇𝑖,𝑘 for transit egress time (hr), 𝑓𝑖,𝑘 is a binary variable representing whether (1) or not (0) there 

is at least one transfer during the trip . For the transit utility function, we subtract the in-vehicle 

travel time of driving from in-vehicle travel time of transit for each trip to incorporate the in-

vehicle travel time in the same level. 

The model is applied to two different population segments: Manhattan and Non-Manhattan. 

People’s travel patterns are different in Manhattan than outside Manhattan due to different built 

environments (transit accessibility, parking space, etc.). If the origin or destination of any trip in 

one tour is inside Manhattan, the whole tour is assigned to the Manhattan segment. 

 

3.3.2 Estimation results 

The travel cost for driving is comprised of parking cost and toll cost reported by 2010/2011 

RHTS. For trips that have no response, the average parking and toll cost is assumed for the 

individual: $4.94 for each Manhattan-related trip and $1.37 for each Non-Manhattan-related trip. 

The cost of transit is $2.75 per trip. Taxi cost is calculated according to the standard metered fare 

from NYC Taxi and Limousine Commission (TLC) plus 8.875% tax and 20% tips (TLC, 2018). We 

also considered the wait times for taxi, assuming wait times for taxi are 3 minutes in Manhattan 
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and 5 minutes outside Manhattan. We added the wait times as the equivalent monetary cost to 

the travel cost of taxi. Carpool cost is assumed to be half that of taxi. There is no cost for bike and 

walking. 

All the estimations are run in Python Biogeme version 2.6a on a MacBook Pro with 2.7 GHz 

Intel Core i5, 8GB memory. The results of both segments are presented in Table 4. 

 

Table 4. Estimation results of nested logit model for both segments 

Manhattan 
segment 

Variable 
number 

Variable name Coefficient 
estimate 

Standard 
error 

t statistic 

1 Auto constant -2.15 0.10 -22.53 *** 

2 Transit constant 3.14 0.10 30.42 *** 

3 Taxi constant 1.06 0.11 9.53 *** 

4 Bike constant 0.44 0.13 3.54 *** 

5 Walk constant 5.74 0.11 54.64 *** 

6 Travel cost ($) -0.06 0.01 -13.37 *** 

7 Carpool travel time (h) 0.60 0.13 4.50 *** 

8 Transit travel time(h) -1.74 0.28 -6.18 *** 

9 Bike travel time(h) -4.31 0.36 -11.84 *** 

10 Walk travel time(h) -5.70 0.14 -39.50 *** 

11 Transit access time (h) -2.71 0.46 -5.88 *** 

12 Transit egress time(h) -2.63 0.48 -5.53 *** 

13 Transit transfer time(h) -3.08 0.73 -4.25 *** 

14 Transit transfer -0.03 0.07 -0.46 

15 1/mu 0.03 0.01 3.23 * 

*, **, and *** indicate statistical significance at the 0.05, 0.01, 0.001 levels, respectively. 

Summary statistics 

upper level Number of observations = 6935 

Initial log likelihood = - 4806.976 

Final log likelihood = -1944.573 

Mcfadden Rho-square = 0.595 

lower level Number of observations = 13769 

Initial log likelihood = -21217.510 
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Final log likelihood = -7040.113 

Mcfadden Rho-square = 0.668 

Non-
Manhattan 
segment 

Variable 
number 

Variable name Coefficient 
estimate 

Standard 
error 

t statistic 

1 Auto constant -0.48 0.05 -10.28 *** 

2 Transit constant 0.93 0.07 12.90 *** 

3 Taxi constant -1.80 0.12 -15.35 *** 

4 Bike constant -1.35 0.11 -12.13 *** 

5 Walk constant 3.50 0.07 53.29 *** 

6 Travel cost ($) -0.06 0.01 -7.32 *** 

7 Carpool travel time (h) 0.36 0.11 3.28 ***  

8 Transit travel time(h) 0.00 NA NA 

9 Bike travel time(h) -5.69 0.62 -9.20 *** 

10 Walk travel time(h) -5.06 0.13 -38.54 *** 

11 Transit access time (h) -1.71 0.34 -5.11 *** 

12 Transit egress time(h) -1.70 0.32 -5.30 *** 

13 Transit transfer time(h) -1.36 0.58 -2.35 ** 

14 Transit transfer -0.07 0.07 -1.01 

15 1/mu 0.11 0.01 8.91 *** 

*, **, and *** indicate statistical significance at the 0.05, 0.01, 0.001 levels, respectively. 

Summary statistics 

upper level Number of observations = 8769 

Initial log likelihood = -6078.208 

Final log likelihood = -5298.416 

Mcfadden Rho-square = 0.128 

lower level Number of observations = 10975 

Initial log likelihood = -16503.397 

Final log likelihood = -7851.371 

Mcfadden Rho-square = 0.524 

 

We calculated the value of time (VOT) in Manhattan segment by computing 
𝛽𝑡,𝑡𝑟𝑎𝑛𝑠𝑖𝑡

𝛽𝑐𝑜𝑠𝑡
=

$29/ℎ. This value is higher than the $22.87/hr reported in Lam and Small (2001), which makes 
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sense when considering inflation and higher cost of living in Manhattan. The VOT for non-

Manhattan is not reported since it is not statistically significant. 

 

3.3.3 Smartphone ownership model and mode choice update 

Since the 2010/2011 RHTS didn’t include choices of FHV and Citi Bike, we need to update our 

model to incorporate these two choices for our 2016 baseline model. Considering the choice of 

these two modes is highly correlated to the ownership of smartphone, we estimated a 

smartphone ownership model for NYC first.  

The data comes from ACS household and person sample records (U.S. Census Bureau, 2016). 

Revealed preference data for smartphones is only available in household records, so we use 

single-person household records and match them to person records to obtain personal attributes. 

To be consistent with the data available from RHTS, the person’s age, income and work status 

are selected as attributes. All the attributes are categorical and have the same classifications as 

in RHTS. The final estimated utility function specification for each individual 𝑛 choosing to own a 

smartphone is shown in Eq. (3.4) relative to 𝑉𝑛𝑜,𝑛 = 0.  

𝑽𝒚𝒆𝒔,𝒏 = 𝑪𝒚𝒆𝒔 + 𝜷𝒊𝒏𝒄𝟏
× 𝒊𝒏𝒄𝟏,𝒏 + 𝜷𝒊𝒏𝒄𝟑

× 𝒊𝒏𝒄𝟑,𝒏 + 𝜷𝒊𝒏𝒄𝟒
× 𝒊𝒏𝒄𝟒,𝒏

+ 𝜷𝒂𝒈𝒆𝟓𝟔
× 𝒂𝒈𝒆𝟓𝟔,𝒏 + 𝜷𝒂𝒈𝒆𝟕

× 𝒂𝒈𝒆𝟕,𝒏 + 𝜷𝒘𝒐𝒓𝒌 × 𝒘𝒐𝒓𝒌𝒏 

(3.4) 

where 𝐶𝑦𝑒𝑠  is an alternative-specific constant of having the smartphone,  𝑖𝑛𝑐𝑖,𝑛  is a binary 

variable for inclusion in annual income category 𝑖 (1: below $30K, 3: $75K-99.9K, 4: above $100K) 

for person 𝑛, 𝑎𝑔𝑒𝑖,𝑛  is a binary variable for inclusion in age category 𝑖 (56: 35-64, 7: older than 

75) for person 𝑛, and 𝑤𝑜𝑟𝑘𝑛 indicates whether person 𝑛 works (1) or not (0).  

We estimate the binary logit model using the open-source software PandasBiogeme 

(Bierlaire, 2018). The estimation was run on a desktop with Intel Xeon 3.5 GHz and 125 GB RAM. 

Table 5 shows the results of the estimated model. The coefficients of higher ages (group 5&6, 

and 7) are negative, which indicates that elderly people are less likely to own a smartphone. And 

people with higher income or with jobs are more likely to own a smartphone. 
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Table 5. Results of coefficients of Smart Phone ownership model 

Variable name Coefficient estimate Standard error t statistic 

Alt.Spec.Constant 1.75 0.138 12.7 *** 

Age groups 5 & 6 -1.48 0.122 -12.1 *** 

Age group 7 -2.63 0.126 -20.8 *** 

Income group 1 -0.478 0.0679 -7.04 *** 

Income group 3 0.641 0.125 5.11 *** 

Income group 4 0.789 0.113 6.96  *** 

Work status 1.08 0.0681 15.9 *** 

*, **, and *** indicate statistical significance at the 0.05, 0.01, 0.001 levels, respectively.  

Summary statistics  

Number of observations = 8030  

Initial log likelihood = -5565.972  

Final log likelihood = -3911.692  

McFadden Rho-square = 0.297  

 

We updated the model to incorporate new mobility services. According to the synthetic 

population in 2016, the total number of daily trips is 30.5M, excluding the FHV and Citi Bike trip 

counts. The total daily trips from 2010/2011 RHTS is 23.8M. The total daily trips increased by 

28.33% from 2011 to 2016, so we expanded the trips in 2011 by this factor to fit for 2016. 

The probability of owning a smartphone obtained from the previous model was regarded as 

the availability of FHV. The probability of choosing FHV is shown in Eq. (3.5). 𝑃𝑖,𝑘(𝐹𝐻𝑉) 

represents the probability of choosing FHV for trip 𝑘 in tour 𝑖, 𝑉6,𝑖,𝑘 is identical to that of choosing 

taxi except for the alternative specific constant which needs to be estimated, i.e. 𝑉6,𝑖,𝑘 = 𝛽6,𝐶 +

𝛽𝑐𝑜𝑠𝑡 × 𝐶𝑜𝑠𝑡𝑖,𝑘,6 + 𝛽𝑡𝑖𝑚𝑒,3 × 𝑇𝑖𝑚𝑒𝑖,𝑘,6 , and 𝑃𝑆𝑀,𝑖(𝑦𝑒𝑠)   is the probability of owning a 

smartphone in tour 𝑖. The 𝑇𝑖𝑚𝑒𝑖,𝑘,6 for FHV is assumed to be 80% that of taxi, resulting in 2.4 

minutes in Manhattan and 4 minutes outside Manhattan. 

𝑃𝑖,𝑘(𝐹𝐻𝑉) = 𝑃𝑖,𝑘(𝐹𝐻𝑉|𝑁2) × 𝑃𝑖(𝑁2) × 𝑃𝑆𝑀,𝑖(𝑦𝑒𝑠)

=
𝑒𝑉6,𝑖,𝑘

∑ (𝑒𝑉𝑗,𝑖,𝑘)𝐽∗

𝑗

×
𝐸[𝑉𝑁2,𝑖]

𝐸[𝑉𝑁2,𝑖] + 𝑒𝑉𝑁1,𝑖
×

𝑒𝑉𝑦𝑒𝑠

𝑒𝑉𝑦𝑒𝑠 + 1
 

(3.5) 
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The presence of FHV also impacts other modes because it affects the choice set. The 

probability of choosing each mode except FHV is calculated with Eq. (3.6). 𝑃𝑖,𝑘(𝑚) denotes the 

probability of choosing mode 𝑚  (excluding FHV) for trip 𝑘  in tour 𝑖 . Since the probability of 

owning a smartphone is interpreted as the availability of FHV, the probability of choosing each 

mode is calculated as the expected probability conditional on owning a smartphone. 

𝑃𝑖,𝑘(𝑚|𝑁2) × 𝑃𝑖(𝑁2) includes FHV in the choice set whereas 𝑃′
𝑖,𝑘(𝑗|𝑁2) × 𝑃′

𝑖(𝑁2) does not. 

𝑃𝑖,𝑘(𝑚) = 𝑃𝑖,𝑘(𝑚|𝑁2) × 𝑃𝑖(𝑁2) × 𝑃𝑆𝑀,𝑖(𝑦𝑒𝑠)

+ 𝑃′
𝑖,𝑘(𝑗|𝑁2) × 𝑃′

𝑖(𝑁2) × (1 − 𝑃𝑆𝑀,𝑖(𝑦𝑒𝑠)) 

=
𝑒𝑉𝑚,𝑖,𝑘

∑ (𝑒𝑉𝑗,𝑖,𝑘)𝐽∗

𝑗

×
𝐸[𝑉𝑁2,𝑖]

𝐸[𝑉𝑁2,𝑖] + 𝑒𝑉𝑁1,𝑖
×

𝑒𝑉𝑦𝑒𝑠

𝑒𝑉𝑦𝑒𝑠 + 1

+
𝑒𝑉𝑚,𝑖,𝑘

∑ (𝑒𝑉𝑗,𝑖,𝑘)𝐽∗

𝑗≠6

×
𝐸[𝑉𝑁2,𝑖]𝑗≠6

𝐸[𝑉𝑁2,𝑖]𝑗≠6
+ 𝑒𝑉𝑁1,𝑖

×
1

𝑒𝑉𝑦𝑒𝑠 + 1
, ∀𝑚 ∈ 𝐽∗ 𝑎𝑛𝑑 𝑚 ≠ 6 

(3.6) 

 

 
The utility of the Citi Bike choice is shown in Eq. (3.7).  
 

𝑉𝑖,𝑘,7 = 𝛽7,𝐶 + 𝛽𝑐𝑜𝑠𝑡 ∗ 𝐶𝑜𝑠𝑡𝑖,𝑘,7 + 𝛽𝑡𝑖𝑚𝑒,4 ∗ 𝑇𝑖𝑚𝑒𝑖,𝑘,7 + 𝛽𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 ∗ 𝑃𝑆𝑀,𝑖(𝑦𝑒𝑠) (3.7) 

In summary, we need to estimate the following parameters for the two emerging mobility 

modes: 𝛽6,𝐶 , 𝛽𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒, 𝛽7,𝐶, for two different segments, Manhattan and non-Manhattan (six 

parameters in total). 

Estimation of the three parameters is done using the aggregation of the choices from the 

two market segments in 2016 compared to observed trips generated per zone, using nonlinear 

least squares regression (NLSR). The objective of the NLSR estimation is shown in Eq. (3.8). 

min 𝑧𝛽6,𝐶,𝛽𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒,𝛽7,𝐶

= ∑[(𝑇𝑟𝑖𝑝𝑝𝑟𝑒,𝑖,𝐹𝐻𝑉 − 𝑇𝑟𝑖𝑝𝑜𝑏𝑠,𝑖,𝐹𝐻𝑉)
2
+ (𝑇𝑟𝑖𝑝𝑝𝑟𝑒,𝑖,𝐶𝐵 − 𝑇𝑟𝑖𝑝𝑜𝑏𝑠,𝑖,𝐶𝐵)

2
]

𝑁

𝑖=1

 

 

(3.8) 

where 𝑇𝑟𝑖𝑝𝑝𝑟𝑒,𝑖,𝐹𝐻𝑉 = 𝑇𝑟𝑖𝑝𝑝𝑟𝑒,𝑖,𝐹𝐻𝑉,𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 + 𝑇𝑟𝑖𝑝𝑝𝑟𝑒,𝑖,𝐹𝐻𝑉,𝑛𝑜𝑛𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 , and 𝑁 =

{1,2, … ,1622} is the set of TAZs in NYC. The NLSR is run in MATLAB 2016a on a desktop with 

Intel® Core™ i7-6700 CPU @ 3.40 GHZ, 16 GB RAM. The calculation time is 531 seconds.  

A bootstrapping method was adopted to measure the statistical significance of the estimated 

coefficients. The coefficient set generated by bootstrapping (Chernick and LaBudde, 2014) has 
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50 bootstrap samples for each coefficient. The estimated coefficients from the NLSR and the 

statistical significance tests are shown in Table 6. The approximate t-stats based on bootstrapping 

suggest the coefficients are statistically significant.  

 

Table 6. Estimated parameters and confidence intervals for FHV and Citi Bike 

    Bootstrap   

Segment No.  Variable name Estimated 
value 

Lower 
bound  

Upper 
bound 

Standard 
Error 

t-stat 

Manhattan 1 Citi Bike Constant -0.35 -0.53 -0.11 0.09 -3.89*** 

2 FHV Constant 0.80 0.69 0.92 0.06 13.33*** 

3 Smartphone -0.34 -0.67 -0.06 0.10 -3.40*** 

Non-
Manhattan 

4 Citi Bike Constant  -1.91 -2.64 -1.67 0.20 -9.55*** 

5 FHV Constant  -3.46 -3.89 -2.74 0.21 -16.48*** 

6 Smartphone -1.51 -2.11 -1.34 0.16 -9.44*** 

Num. Obs. 1622  

RMSE 
(%CV) 

FHV: 401.83 trips/zone (154% NYC, 51% 
Manhattan) 

Citi Bike: 59.80 trips/zone (54%)  

*, **, and *** indicate statistical significance at the 0.05, 0.01, 0.001 levels, respectively.  

 

To validate the model, we compared the aggregated mode share from the synthetic 

population to the 2017 Citywide Mobility Survey (CMS) from NYC DOT. The results are presented 

in Figure 12. Comparing to the mode share of 2011 RHTS, the prediction of synthetic population 

is closer to the 2017 CMS.  
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Figure 12. Aggregated mode share of 2011 RHTS, synthetic population and 2017 CMS.  
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Section 4: Baseline model calibration 

As introduced in Section 2, MATSim uses a queue model to simulate traffic dynamics. We 

calibrate the road network in the baseline model to capture factors not considered: e.g. arterial 

traffic systems, non-resident (tourist) trips, truck deliveries. The synthetic population’s mode 

choice model also needs to be adjusted to fit the MNL-oriented model structure from the nested 

logit model.  

 

4.1 Data preparation 

4.1.1 Modal networks 

The Modal networks consists of a road network transformed from Open Street Map (OSM) 

data and a transit network generated from GTFS data. The transformation of road network is 

conducted via the open-source Java-based network edit tool JOSM (JOSM, 2018). The OSM data 

is extracted in November 2018. The road network is shown in Figure 13. We classified the links 

of road network to two categories: Arterial link and Freeway link. If the free flow speed of a link 

is above 33.33 m/s (about 75 mph), it belongs to a Freeway link, otherwise it is an Arterial link. 

The transit network is generated from GTFS data (MTA, 2018) in September 2016. The stop 

locations, operation schedules and timetables are the same as in the historical data. Vehicle 

capacities are also calibrated. We combined the transit network with the road network using 

MATSim extension “pt2matsim”. The combined modal network is presented in Figure 14. The 

routes of transit lines are artificially generated according to the distances between stations and 

operation timetables, instead of searching in the road network. As a result, the transit assignment 

is simulated on dedicated links. 
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Figure 13. Road network from OSM data. 

 

 

Figure 14. Modal network of NYC. 



 

  Multi-agent virtual simulation test bed ecosystem   28 

 

4.1.2 Extended travel demand 

In Section 3, we developed the synthetic population of NYC with personal information, travel 

agendas and mode choices. However, this population only incorporates city residents. Those who 

live outside the city but travel to NYC are not included, which would lead to less volumes in some 

areas. Therefore, we generated a subpopulation of those non-residential travelers to 

compensate for the missing volumes. The subpopulation is duplicated from the 2011 RHTS, 

keeping the agendas the same. The modes are aggregated to walking, driving and transit. For the 

trips cross the boundary of the city, the origin/destination of inside/outside trips will be switched 

to the nearest gateway by modes. The locations of all the gateways are shown in Figure 15. In 

the end, a 1.18M population was added to the simulation with 3.04M trips. 

 

 

Figure 15. Gateway locations around the city. 

 

4.1.3 Activity and travel parameters in MATSim 

In MATSim, each agent has multiple plans in a day and selects one to execute among them. 

To evaluate the plans, a score is calculated for each plan, which is similar to the mode utility in 
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the mode choice model but incorporates the additional utility (score) of activities (Nagel et al., 

2016). The basic function of calculating the plan score is shown in Eq. (4.1). 

𝑆𝑝𝑙𝑎𝑛 = ∑ 𝑆𝑎𝑐𝑡,𝑞 + ∑ 𝑆𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞)

𝑁−1

𝑞=0

𝑁−1

𝑞=0

 (4.1) 

where 𝑁  is the number of activities in the plan, 𝑆𝑎𝑐𝑡,𝑞  refers to the score of activity 𝑞  and 

𝑆𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞)  represents the score of trip after activity 𝑞  by 𝑚𝑜𝑑𝑒(𝑞) . The last activity is 

combined with the first one to have the same number of activities and trips. The score functions 

are shown in Eqs. (4.2a) – (4.2d).  

𝑆𝑑𝑢𝑟,𝑞 = 𝛽𝑑𝑢𝑟 ∗ 𝑡𝑡𝑦𝑝,𝑞 ∗ ln (𝑡𝑑𝑢𝑟,𝑞 𝑡0,𝑞)⁄  (4.2a) 

𝑆𝑤𝑎𝑖𝑡,𝑞 = 𝛽𝑤𝑎𝑖𝑡 ∗ 𝑡𝑤𝑎𝑖𝑡,𝑞 (4.2b) 

𝑆𝑙𝑎𝑡𝑒 𝑎𝑟𝑟,𝑞 = {
𝛽𝑙𝑎𝑡𝑒 𝑎𝑟𝑟 ∗ (𝑡𝑠𝑡𝑎𝑟𝑡,𝑞 − 𝑡𝑙𝑎𝑡𝑒𝑠𝑡 𝑎𝑟𝑟,𝑞), 𝑖𝑓 𝑡𝑠𝑡𝑎𝑟𝑡,𝑞 > 𝑡𝑙𝑎𝑡𝑒𝑠𝑡 𝑎𝑟𝑟,𝑞 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.2c) 

𝑆𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝,𝑞 = {
𝛽𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝 ∗ (𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑑𝑒𝑝,𝑞 − 𝑡𝑒𝑛𝑑,𝑞 ), 𝑖𝑓 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑑𝑒𝑝,𝑞 > 𝑡𝑒𝑛𝑑,𝑞 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.2d) 

𝑆𝑠ℎ𝑜𝑟𝑡 𝑑𝑢𝑟,𝑞 = {
𝛽𝑠ℎ𝑜𝑟𝑡 𝑑𝑢𝑟 ∗ (𝑡𝑠ℎ𝑜𝑟𝑡 𝑑𝑢𝑟,𝑞 − 𝑡𝑑𝑢𝑟,𝑞), 𝑖𝑓 𝑡𝑠ℎ𝑜𝑟𝑡 𝑑𝑢𝑟,𝑞 > 𝑡𝑑𝑢𝑟,𝑞 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.2e) 

where 𝑡𝑡𝑦𝑝,𝑞 is the typical duration of activity 𝑞, 𝑡𝑑𝑢𝑟,𝑞 is the actual duration of activity 𝑞, 𝑡0,𝑞 is 

the duration when the utility of activity 𝑞 starts to be positive. 𝑡0,𝑞 is set to 𝑡𝑡𝑦𝑝,𝑞 × exp (−10ℎ/

𝑡𝑡𝑦𝑝,𝑞) according to Rieser et al. (2014). We have five activity types defined in MATSim: Home, 

Work, School, University and Secondary. MATSim defines the maximum durations for the whole 

population by activity type: we set the maximum durations of the activities as 8h, 8h, 8h, 1h and 

1h correspondingly. 𝑡𝑤𝑎𝑖𝑡,𝑞 is the wait time before activity 𝑞 starts, 𝑡𝑠𝑡𝑎𝑟𝑡,𝑞 is the actual start time 

of activity 𝑞, 𝑡𝑙𝑎𝑡𝑒𝑠𝑡 𝑎𝑟𝑟,𝑞 is the latest start time of activity 𝑞 without penalty, 𝑡𝑒𝑛𝑑,𝑞 is the actual 

end time of activity 𝑞, 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑑𝑒𝑝,𝑞 is the earliest possible leaving time of activity 𝑞, 𝑡𝑠ℎ𝑜𝑟𝑡 𝑑𝑢𝑟,𝑞 
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is the shortest possible duration of activity 𝑞. Eq. (4.2a) defines the score of performing an activity, 

which is usually positive. Eq. (4.2b) represents the wait penalty. Eq. (4.2c) is the penalty of late 

arrival, Eq. (4.2d) is the penalty of early departure, and Eq. (4.2e) denotes the penalty for a “too 

short” activity. 𝛽𝑤𝑎𝑖𝑡, 𝛽𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝 , 𝛽𝑠ℎ𝑜𝑟𝑡 𝑑𝑢𝑟 are recommended to be 0 according to Nagel et al. 

(2016), if no data is available to determine those parameters. 𝛽𝑑𝑢𝑟 is set to be the same as the 

positive value of the parameter for travel time of driving alone, and the 𝛽𝑙𝑎𝑡𝑒 𝑎𝑟𝑟 is determined 

relative to the parameter of travel time of driving alone according to Small (1982). Small (1982) 

proposed a scheduling model for work trips and the results indicated that the parameter of 

schedule delay is about 2.39 times of travel time. We use this to estimate a 𝛽𝑙𝑎𝑡𝑒 𝑎𝑟𝑟 = −4.19. 

The parameters used to calculate the activity score in MATSim-NYC are presented in Table 7. 

Since 𝛽𝑑𝑢𝑟 is assumed in order to have agents try to maximize their durations, we make sure to 

omit the duration attribute from the score calculations when determining consumer surplus (i.e. 

the consumer surplus measure reported in our results captures travel disutilities and schedule 

delays, not activity participation utility).  

 

Table 7. Parameters for activity score in MATSim 

𝜷𝒅𝒖𝒓 𝜷𝒘𝒂𝒊𝒕 𝜷𝒍𝒂𝒕𝒆 𝒂𝒓𝒓 𝜷𝒆𝒂𝒓𝒍𝒚 𝒅𝒆𝒑 𝜷𝒔𝒉𝒐𝒓𝒕 𝒅𝒖𝒓 

1.75 0 -4.19 0 0 

 

Since the default MATSim only supports mode choice with the Multinomial Logit (MNL) 

model, we adjusted the tour-based nested logit model into a trip-based MNL model as shown in 

Eqs. (4.3a) – (4.3c). The smartphone ownership model and the availability of Citi Bike are ignored 

as well in MATSim. 

𝑉𝑑𝑟𝑖𝑣𝑖𝑛𝑔,𝑘 = 𝛽𝑑𝑟𝑖𝑣𝑖𝑛𝑔,𝐶 ∗ 𝜇 + 𝛽𝑐𝑜𝑠𝑡 × 𝐶𝑜𝑠𝑡𝑘,𝑑𝑟𝑖𝑣𝑖𝑛𝑔 (4.3a) 

𝑉𝑗,𝑘 = 𝛽𝑗,𝐶 + 𝛽𝑐𝑜𝑠𝑡 × 𝐶𝑜𝑠𝑡𝑘,𝑗 + 𝛽𝑡𝑖𝑚𝑒,𝑗 × 𝑇𝑖𝑚𝑒𝑘,𝑗 , 𝑗 ∈ 𝐽\{1,2} (4.3b) 

𝑉2,𝑘 = 𝛽2,𝐶 + 𝛽𝑐𝑜𝑠𝑡 × 𝐶𝑜𝑠𝑡𝑘,2 + 𝛽𝑡𝑖𝑚𝑒,2 × (𝑇𝑖𝑚𝑒𝑘,2 − 𝑇𝑖𝑚𝑒𝑘,𝑑𝑟𝑖𝑣𝑖𝑛𝑔) + 𝛽𝐴𝑇 × 𝐴𝑇𝑘

+ 𝛽𝐸𝑇 × 𝐸𝑇𝑘 + 𝛽𝑊𝑇 × 𝑊𝑇𝑘 + 𝛽𝑓 × 𝑓𝑘  
(4.3c) 

where all the notations are defined as before, only without the subscription 𝑖  for tour. The 

equivalent parameters used for the travel score in MATSim-NYC are shown in Table 8. The travel 
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time parameter of car was regarded as the reference and the travel time parameters of of the 

other modes were adjusted accordingly (including the parameters of Access Time, Egress Time, 

and Transfer Time).  

 

Table 8. Parameters for travel score of both Manhattan and Non-Manhattan segments 

Manhattan car carpool transit taxi bike walk Citi Bike FHV 

Constant -0.06 0.00 2.95 1.06 0.44 5.73 -0.37 0.79 

Travel Time 0 2.35 0.00 1.75 -2.55 -3.94 -2.55 1.75 

Cost -0.06 

transit 

Access Time -0.96 

Egress Time -0.86 

Transfer Time -1.46 

Non-Manhattan car carpool transit taxi bike walk Citi Bike FHV 

Constant -0.05 0.00 0.76 -1.81 -1.35 3.49 -2.04 -3.38 

time 0.00 0.36 0.00 0.00 -5.64 -5.05 -5.64 0.00 

cost 0 

transit 

Access Time -1.71 

Egress Time -1.67 

Transfer Time -1.61 

 

 

4.2 Network calibration 

4.2.1 Overview of MATSim Traffic Flow Model 

MATSim adopted a computationally efficient queue-based approach to simulate traffic flow 

(Horni et al., 2016). Dobler and Axhausen (2011) gave an overview of the parallel queue-based 

traffic simulation implemented in MATSim. In the queue-based model, the flow capacity, storage 

capacity, and free flow speed link travel time are taken into consideration (Agarwal et al., 2015). 

First, the flow capacity defines the number of vehicles leaving a link per time step. Second, the 

storage capacity refers to the number of vehicles fitting onto a network link, which is calculated 

by the length of link divided by the equivalent length of vehicle and multiplied number of lanes. 

However, this constraint can be relaxed during simulation for some overcrowded links to 

maintain a minimal flow (Horni and Nagel, 2016). The configuration parameter in MATSim “stuck 

time” defines the threshold for a vehicle to stay stationary. The default value of stuck time is 10, 
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i.e., a stationary vehicle is moved forward after 10 time steps. Lastly, as the name indicates, the 

free flow speed link travel time is calculated by the link length over link free flow speed.  

The queue-based model regards a network link (i.e. a road segment) as a queue. When a 

vehicle is entering the link, it is added to the tail of the waiting queue at the start of the link. The 

vehicle can enter the link until it becomes the head of the queue, the downstream link allows 

entering and the link flow capacity is not exceeded. Once the vehicle entered a link, the travel 

time on that link will be the free flow speed link travel time. The Fundamental Diagrams (FDs) of 

the queue-based model are presented in Figure 16.  

 

 

Figure 16. FDs of MATSim queue-based model (a) Flow vs Density and (b) Speed vs Density. 

 

The queue-based model ignores the intra-link interactions to improve the computational 

efficiency. When a link is saturated, the flow stays the same in MATSim as long as the 

downstream link is open, while in the real world, the flow goes down as the density increases. 

This assumes that the MATSim equilibrium operates in a steady state where traffic would not be 

oversaturated. Speed, even though it goes down with density after the link is saturated, is still 

higher than the real speed because vehicles travel with free flow speed after entering a link. 

Improvements are made to address these limitations in Section 6.  
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4.2.2 Calibration framework 

Since the storage capacity is always set large enough or relaxed by configuration, the link 

flow capacity and free flow speed are the major attributes that influence the traffic flow 

simulation in MATSim. In the MATSim-NYC model, the road network is transformed from OSM 

data which has imprecise link flow capacities and free flow speeds and therefore cannot 

represent the real road network. Other factors (e.g. arterial traffic system, non-resident (tourist) 

trips, truck deliveries, etc.) that affect the link flow capacity and free flow speed are not 

incorporated due to limitations of the data.  The road network attributes (link flow capacity and 

free flow speed) need to be calibrated to make the simulation model more realistic.  

We defined two sets of parameters for those two major network attributes. Based on the 

queue-based model, vehicles travel with unsaturated flow speed when entering a link. Therefore, 

the link unsaturated flow speed parameters are calibrated first according to the INRIX speed data 

and then implemented in the road network. The link capacity factors are perturbated iteratively 

to find the equilibrium of the calibrated link capacity and unsaturated flow speed, which leads to 

a closer volume distribution compared to the real traffic count.  The overview of the process is 

shown in Figure 17. 

 

 

Figure 17. The framework of calibration process. 
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4.2.3 Reference data 

The 2016 bridges/tunnels volumes data (NYCDOT,2016) and INRIX speed data in September, 

2016, from DOT were used as the calibration reference data. The volumes data contains hourly 

average traffic counts of 59 bridges/tunnels around the city on a typical weekday. The speed data 

includes observed 5-minute speeds for 6,996 link segments across the city.  

We selected 19 facilities from the volumes data to calibrate the road capacities, as shown in 

Table 9. A screenline along East River was defined, as red curves shown in Figure 18, which 

consists of Queensboro Bridge, Williamsburg Bridge, Queens Midtown Tunnel, Manhattan Bridge, 

Brooklyn Bridge, and Hugh Carey Tunnel. The Hudson River crossings are not considered since 

most of the trips are made by non-residents which are not sensitive to the calibration of the road 

network. 

Table 9. List of traffic count facilities 

ID Facility ID Facility ID Facility 

1 Brooklyn Bridge 8 Washington Bridge  15 Verrazzano-Narrows Bridge  

2 Ed Koch Queensboro 
Bridge 

9 Willis Avenue Bridge  16 George Washington Bridge 

3 Williamsburg Bridge  10 145th Street Bridge  17 Holland Tunnel 

4 Alexander Hamilton 
Bridge  

11 Hugh L. Carey Tunnel  18 Lincoln Tunnel  

5 Macombs Dam Bridge  12 Queens-Midtown Tunnel  19 Manhattan Bridge 

6 Madison Avenue Bridge 13 Robert F. Kennedy Memorial 
Bridge Manhattan Plaza  

  

7 University Heights 
Bridge  

14 Robert F. Kennedy Memorial 
Bridge Bronx Plaza  
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Figure 18. Select facilities for link capacity calibration and East River screenline. 

 

For the speed calibration, we took the average hourly speed on weekdays of September, 

2016, as reference. Figure 19 presents the distribution of average observed speed at 12 AM.  

 

 

Figure 19. Distribution of average hourly speed at 12 AM from INRIX data. 
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4.2.4 Link unsaturated flow speed calibration 

The default link free flow speed in MATSim is fixed across a day, while the speed from INRIX 

data varies with time. We adopted a time-variant network to capture the variation of link free 

flow speed in our simulation. Six time periods are defined for one day: 6 - 9 AM, 9 AM - 12 PM, 

12 - 3 PM, 3 - 6 PM, 6 - 9PM and 9 PM - 6 AM. Different speed factors were applied to links 

according to link types (defined in Section 4.1.1) and time. Denote 𝐿 = {1,2}, where 1 is freeway 

and 2 is arterial, and 𝑇 = {1,2,3,4,5,6} refers to six time periods correspondingly.  

First, the average speed data from INRIX were aggregated by link type and time period (Table 

10). We can calculate the link speed factors of each freeway link as Eq. (4.4).  

𝑓1,𝑡
𝑠 𝑣1

0 = 𝑣1,𝑡
𝑜𝑏 , 𝑡 ∈ 𝑇 (4.4) 

where 𝑣1,𝑡
𝑜𝑏 refers to the average observed speed for the freeway link in time period 𝑡, and 𝑣1

0 

represents the default free flow speed for the freeway link.  

Table 10. Average observed speed in each time period for Freeway and Arterial links (mph) 

 
6AM-9AM 9AM-12PM 12PM-3PM 3PM-6PM 6PM-9PM 9PM-12AM 

Freeway 36.88 37.93 37.61 33.05 36.25 42.41 

Arterial 14.10 13.42 13.11 12.80 13.91 15.34 

 

For Arterial links, further adjustments are needed due to high variation in free flow speed. A 

set of sub-categories 𝐽 = {1,2,3} is used to represent arterial links with free flow speeds 22.2 m/s, 

15.0 m/s and 8.3m/s, respectively. To adjust the link speed as close to observed speed as possible, 

we applied different link speed factors to corresponding sub-categories of arterial links using Eq. 

(4.5). 

𝑓2,𝑡,𝑗
𝑠 𝑣2,𝑗

0 = 𝑣2,𝑡
𝑜𝑏 , 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 (4.5) 

where 𝑣2,𝑗
0  is the default link free speed for link sub-category 𝑗.  
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4.2.3 Link capacity calibration 

After the free flow speeds are adjusted to accommodate time-varying conditions like non-

resident traffic and signal control, the next step is the capacity calibration. Based on the time 

variant network feature of MATSim, a link behaves according to Eq. (4.6). 

𝐶𝑙,𝑡
𝑠𝑖𝑚 = 𝐶𝑙

0𝑓𝑙,𝑡
𝑐  (4.6) 

where 𝐶𝑙,𝑡
𝑠𝑖𝑚 is the link flow capacity in simulation for facility type 𝑙 ∈ 𝐿 in time period 𝑡 ∈ 𝑇, 𝐶𝑙

0 

is the default link capacity for facility type 𝑙 ∈ 𝐿  from OSM, and 𝑓𝑙,𝑡
𝑐  is a factor to adjust the 

capacity for a given facility type 𝑙 ∈ 𝐿 in time period 𝑡 ∈ 𝑇. The storage capacities are unchanged 

from the default values (average vehicle length set to 7.5 m). The flow capacities are used in a 

cellular automata model to propagate traffic within the road network to output location volumes 

by time of day within one day. The simulation then proceeds through multiple days with each 

subsequent day updating the travel choices of the population and the cellular automata model 

updates the system performance based on the propagation of the new day’s traffic. The resulting 

output of 𝑛 days of simulation is denoted as Ωn , i.e. ({𝑉𝑖,𝑡
𝑠𝑖𝑚}) = Ωn(𝜃, 𝐼; 𝑓𝑠) for location 𝑖  at 

time period 𝑡. In our model there are 12 (2 types, 6 periods) capacity parameters to be calibrated. 

The 19 locations in Table 9 are used for the calibration.  

The objective is to minimize the simulation error with respect to the observed data (Yu and 

Fan, 2017). The loss function 𝐿(𝜃, 𝐼; 𝑓𝑠) is a response to a set of parameters and model input 

data 𝐼 given speed factors 𝑓𝑠. It is shown in Eq. (4.7). 𝜃 is a generic term representing the set of 

flow capacity factors 𝑓𝑙,𝑡
𝑐 . 

min 𝐿(𝜃, 𝐼; 𝑓𝑠) =  ∑∑|𝑉𝑖,𝑡
𝑜𝑏 − Ω(𝜃, 𝐼; 𝑓𝑠)|/𝑉𝑖,𝑡

𝑜𝑏

𝑡∈𝑇𝑖∈𝑁

                                         
(4.7) 

where 𝑉𝑖,𝑡
𝑜𝑏  and 𝑉𝑖,𝑡

𝑠𝑖𝑚  are the average observed volumes and average simulated volumes of 

location 𝑖 in time period 𝑡.  

To estimate the capacity parameters 𝜃 in Eq. (4.7), the approach of stochastic approximation 

(SA) is applied (Robbins and Monro, 1951). The SA approach is an iterative algorithm to update 

the parameter set. Let 𝜃𝑘  denote the estimate for 𝜃∗ at the 𝑘th iteration. The standard form of 
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the update algorithm is shown in Eq. (4.8), where 𝑔𝑘 is the gradient and 𝑎𝑘 is a step size at the 

𝑘th iteration. 

𝜃𝑘 = 𝜃𝑘−1 − 𝑎𝑘−1𝑔𝑘−1(𝜃𝑘−1) (4.8) 

The general idea of the SA algorithm is to mimic the gradient search method used in 

deterministic optimization problems, which requires a gradient of the loss function for the 

parameter update. However, for a traffic simulation model, the analytical form of the gradient of 

Ω(𝜃, 𝐼; 𝑓𝑠) is not available for calculation. A numerical approximation of the gradient is obtained 

instead. With an approximated gradient, Equation (4.8) can be rewritten as Eq. (4.9). 

𝜃𝑘 = 𝜃𝑘−1 − 𝑎𝑘−1�̂�𝑘−1(𝜃𝑘−1) (4.9) 

A well-known method for gradient approximation is the finite-difference (FD) method 

(Dennis and Schnabel, 1989). This method has two types, namely, one-sided and two-sided 

approximation. They are shown as: 

�̂�𝑘(𝜃𝑘) =

[
 
 
 
 
 
𝐿(𝜃𝑘 + 𝑐𝑘𝑒1) − 𝐿(𝜃𝑘)

𝑐𝑘

⋮
𝐿(𝜃𝑘 + 𝑐𝑘𝑒𝑝) − 𝐿(𝜃𝑘)

𝑐𝑘 ]
 
 
 
 
 

 (4.10) 

�̂�𝑘(𝜃𝑘) =

[
 
 
 
 
 
𝐿(𝜃𝑘 + 𝑐𝑘𝑒1) − 𝐿(𝜃𝑘 − 𝑐𝑘𝑒1)

2𝑐𝑘

⋮
𝐿(𝜃𝑘 + 𝑐𝑘𝑒𝑝) − 𝐿(𝜃𝑘 − 𝑐𝑘𝑒𝑝)

2𝑐𝑘 ]
 
 
 
 
 

 (4.11) 

where 𝑒𝑖 denotes a vector with a one in the 𝑖th place and zeros elsewhere. However, this method 

is not computationally efficient for problems with an increasing parameter size. For example, if 

the number of parameters is p, the one-sided approximation needed to calculate p+1 functions 

and the two-sided one needs 2p functions. The computational effort increases linearly with the 

number of parameters. To address this difficulty, the simultaneous perturbation stochastic 

approximation (SPSA) algorithm provides a good alternative to the FD method. 

The SPSA method (Spall, 1988, 1998a, 1998b) requires only two measurements to 

approximate the gradient at each iteration regardless of the dimension of the parameters vector 
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𝜃 . This is achieved as all elements of the 𝜃𝑘  vector are varied simultaneously, instead of 

calculating the measurements one by one for p+1 or 2p times like in the FD method. The 

formulation for SPSA algorithm is shown as: 

�̂�𝑘(𝜃𝑘) =

[
 
 
 
 
 
𝐿(𝜃𝑘 + 𝑐𝑘Δ𝑘) − 𝐿(𝜃𝑘 − 𝑐𝑘Δ𝑘)

2𝑐𝑘Δ𝑘1

⋮
𝐿(𝜃𝑘 + 𝑐𝑘Δ𝑘) − 𝐿(𝜃𝑘 − 𝑐𝑘Δ𝑘)

2𝑐𝑘Δ𝑘𝑝 ]
 
 
 
 
 

=
𝐿(𝜃𝑘 + 𝑐𝑘Δ𝑘) − 𝐿(𝜃𝑘 − 𝑐𝑘Δ𝑘)

2𝑐𝑘

[
 
 
 
Δ𝑘1

−1

Δ𝑘2
−1

⋮
Δ𝑘𝑝

−1
]
 
 
 

 (4.12) 

 

The approximation function for each parameter is the same except the perturbation term. 

This means the measurement of the loss function just needs to be calculated twice, 

𝐿(𝜃𝑘 + 𝑐𝑘Δ𝑘)  and 𝐿(𝜃𝑘 − 𝑐𝑘Δ𝑘) . Compared with the FD method, this provides significant 

computational improvement for optimization analysis. More detailed discussion of SPSA 

algorithm can be found refer in Spall (1988, 1998a, 1998b). The capacity calibration algorithm is 

summarized in Figure 17. The SPSA method from Spall is shown in Algorithm 1.  

 
Algorithm 1: SPSA (source: Spall (1988, 1998a, 1998b)) 
 

Input: initial vector of link capacity factors  𝜃0 

0: Initialization 

Set 𝑘 = 1, 𝛽, 𝛾, 𝑎, 𝐴, 𝑐 as initial values. 

1: Generation of simultaneous perturbation vectors 

Generate a 𝑝-dimension  ∆𝑘 by Monte Carlo. Each element of ∆𝑘 is generated 

independently from a Bernoulli ±1 distribution with probability of ½. 

Calculate 𝑎𝑘 =
𝑎

(𝑘+𝐴)𝛽
 and 𝑐𝑘 =

𝑐

𝑘𝛾. 

2: Gradient approximation 

Calculate the gradient by Eq. (4.9). 

3: Update 𝜃𝑘  estimation 

Update 𝜃𝑘 by Eq. (4.6). 

Terminate the algorithm when loss function in Eq. (4.9) reached the threshold or the 

maximum iteration were reached, or set 𝑘 = 𝑘 + 1 and return step 1. 

Output: final vector of link capacity factors 𝜃𝑘  
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The SPSA method was implemented in Java and run with the MATSim-NYC model. The initial 

coefficients are 𝛽 = 0.602, 𝛾 = 0.101, 𝑎 = 0.16, 𝐴 = 3000, 𝑐 = 0.05. The initial value of the link 

flow capacity factor is 0.6. The upper bound and lower bound of link capacity factors are set as 

0.8 and 0.3 to make sure the link capacities stay in a reasonable range. To save computation time 

for calibration, we ran only 𝑛 = 50 days in MATSim for each iteration of the calibration. 

 

4.3 Calibration Results 

The calibration was running on a desktop with Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz 

processors and 128GB RAM. We ran the calibration for 6 iterations until the simulated screenline 

volumes were observed to be close to the observed data. Each iteration took around 11 hours. 

The calibrated link capacity factors are presented in Table 11. 

 

Table 11. Calibrated link capacity factors for Freeway and Arterial links 

 6AM-9AM 9AM-12PM 12PM-3PM 3PM-6PM 6PM-9PM 9PM-12AM 

Freeway 0.61 0.69 0.51 0.63 0.55 0.68 

Arterial 0.59 0.51 0.57 0.50 0.46 0.68 
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Figure 20. Comparison of INRIX speed (observed) and simulated speed. 

 

As Figure 20 shows, the simulated average speed in each time period is close to the INRIX 

speed. For the Freeway links, the relative difference is 7.2% on average, with the highest of 9.5%. 

For the Arterial links, the relative difference is 17.1% on average, with the highest at 18.5%. The 

results of the Arterial links are worse because the default free flow speeds of the Arterial links 

vary more. 

 

 

Figure 21. Average simulated and real volume distribution of East River screenline across all 

time periods. 
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The simulated volumes of the screenlines are also close to the real traffic count. For the East 

River screenline, the difference between the total daily simulated volumes and real volumes is 

only 2.6%. If we look at different time periods, the relative difference is 10.3% on average, with 

the highest at 16.3%.  

We also compared the calibration results of East River screenline with the NYBPM 2010 

update (Brinckerhoff, 2014). The results are presented in Table 12. The MATSim NYC model has 

the similar difference of East River screenline with NYBPM, which is 2.6% to -2.4%.  

 

Table 12. Differences between modeled daily volumes and real counts of NYBPM and 

MATSim NYC model 

 East River screenline 

NYBPM 2010 update -2.4% 

MATSim NYC model 2.6% 

 

4.4 Validation 

We validated the calibrated model by comparing the simulation output transit station 

ridership with observed turnstile count data as well as with volumes on key corridors. 

  

4.4.1 Validation data 

Two data sources are adopted for validation: 2016 Average Weekday Subway Ridership data 

(MTA, 2018) and 2014-2018 Traffic Volume Counts data (NYC DOT, 2019). The subway ridership 

data incorporates the average weekday ridership per subway station across the city. The 

ridership refers to the number of passengers entering the station, including passengers transfer 

from other stations. Passengers transferring in the same station are not incorporated. We 

selected 10 stations of the city as reference (shown in Figure 22). The validation results of transit 

station ridership are presented in Table 13. The difference of total daily ridership is only 8%.  
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Figure 22. Subway locations for validation.  

Table 13. Comparison of simulated and observed daily ridership of 10 stations 

Station Real Simulated Difference % 

14 St - Union Square 106,718       97,825  -8% 

Grand Central - 42 St 158,580     170,025  7% 

Penn Station - 123 & ACE 173,108     256,825  48% 

Times Square 202,363     191,425  -5% 

Fulton St 85,440       83,025  -3% 

Canal St 70,806       78,250  11% 

59St - Columbus Circle 73,836       75,050  2% 

34 St - Herald Sq 125,682     124,500  -1% 

Atlantic Av-Barclays Ctr (Brooklyn) 42,711       59,350  39% 

Jackson Hts-Roosevelt Av (Queens) 52,296       41,200  -21% 

Average 1,091,540    1,177,475  8% 
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The 2014-2018 Traffic Volume Counts data was collected by NYC DOT for validation of NYBPM. 

The data consists of hourly volumes of 597 locations across the city from 2014 – 2018. To validate 

the MATSim NYC model, the volume counts in 2016 of 15 locations are selected (listed in Table 

14). As the red links show in Figure 23, some locations (e.g. 3 AVENUE) have more than one count 

facility. When matched with those facilities in the MATSim-NYC network, 42 links were selected. 

The daily volumes of the 42 links were compared and the relative difference between simulated 

volumes and real counts is 39.8% on average. The median difference is 29%.  

 

Table 14. Locations for link volume validation 

ID Location ID Location ID Location 

1 10 AVENUE 6 CANAL STREET 11 MADISON AVENUE 

2 2 AVENUE 7 EAST 119 STREET 12 NORTHERN BOULEVARD 

3 3 AVENUE 8 FDR DRIVE 13 WEST 29 STREET 

4 5 AVENUE 9 GRAND CENTRAL PARKWAY 14 LONG ISLAND EXPRESSWAY 

5 9 AVENUE 10 GRAND STREET 15 BROOKLYN QUEENS EXPRESSWAY 
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Figure 23. Distribution of volume count facilities. 
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Section 5: Scenario analyses 

We conducted five scenario analyses based on the calibrated baseline model in MATSim. 

Scenario One is the impact analysis of the hypothetical set-up of a new Amazon HQ in Long Island 

City. Scenario Two is the demand forecast of Citi Bike’s expansion plan. The analyses of those two 

scenarios are completed based solely on the synthetic population and estimated tour-based 

mode choice model. Scenario Three is the evaluation of the congestion pricing policy in CBD area 

of Manhattan. Scenario Four is the implementation of the Brooklyn Queens Connector (BQX). 

Scenario Five is the deployment of autonomous vehicles in Manhattan. The last three scenarios 

are tested on the calibrated simulation test bed. The details of all scenarios are introduced in the 

rest of this section. 

For our base model, we use the calibrated model with an adjustment for the fare price. 

Assume a passenger pays $2.75 per transit trip (unlimited plan and free transfers are assumed to 

be priced into that fare). The utility function of transit is adjusted and shown in Eq. (5.1) and (5.2). 

The disutility of fixed transit fare per trip was added into the constant of the previous utility 

function of transit.  

𝑉′2,𝑘 = 𝛽′2,𝐶 + 𝛽𝑡𝑖𝑚𝑒,2 × (𝑇𝑖𝑚𝑒𝑘,2 − 𝑇𝑖𝑚𝑒𝑘,𝑑𝑟𝑖𝑣𝑖𝑛𝑔) + 𝛽𝐴𝑇 × 𝐴𝑇𝑘 + 𝛽𝐸𝑇 × 𝐸𝑇𝑘

+ 𝛽𝑊𝑇 × 𝑊𝑇𝑘 + 𝛽𝑓 × 𝑓𝑘 

(5.1) 

𝛽′2,𝐶 = 𝛽2,𝐶 + 𝛽𝑐𝑜𝑠𝑡 ∗ 2.75  (5.2) 

 

5.1 Scenario One 

Amazon planned to build a new HQ in Long Island City (LIC Development MOU, 2018). The 

project expected to create 25,000 new jobs in ten years and up to 40,000 new jobs in fifteen 

years. Although that decision has since been canceled (NBC, 2019), it presents a timely case study 

with well-defined parameters to study its potential effect on travel patterns as NYC continues 

growing its technology sector.  
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Figure 24. Original planned site of Amazon’s NYC Headquarters (LIC Development MOU, 

2018). 

We assume the new HQ will attract employees from the “professional, scientific, and 

technical services” (PSTS), with North American Industry Code System (NAICS) code 54. The 

process flow of this scenario analysis is shown in Figure 25. First, the population is expanded with 

the natural growth rate 0.3% (NYC Planning, 2017) to predict the population in 2028. About 8,023 

new people will join the PSTS industry for the whole city under the natural growth, of which 8.01% 

(643 in total) are attracted by Amazon. The reminder of 25,000 new jobs come from outside the 

city. Then, socio-demographic attributes and agendas are randomly assigned to those increment 

of population. Amazon workers receive attributes from PSTS industry while others receive 

attributes  from other industries. Amazon workers have the simplest agenda: 8:30AM from home 

to work and 5:30PM from work to home. Others take the agendas as the same as the existing 

population excluding PSTS workers.  
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Figure 25. Process flow of experimental design. 

 

By using a synthetic population, we can adjust specific individuals by employment industry. 

As a result, the spatial distribution of potential employees can be modeled as shown in Figure 26. 

 

 

Figure 26. Spatial distribution of home locations for workers in TAZ 362 (a) in 2016, and (b) in 

2028 with Amazon HQ relocation. 

 

Existing 2016 Population 

   Existing 2016 Population  Normal Population Growth  Population due to Amazon 
Sourcing Employee outside 
NYC 

2028 Population who will not Work 
for Amazon 
  
Receive Socio-demographic and 
agenda assignment from the whole 
existing population 

2028 Population who will work for 
Amazon (25,000) 
  
Receive Socio-demographic and 
agenda assignment from the 
population who work in PSTS  

(a) (b) 
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The mode choices of the increment of population are simulated based on the mode choice 

model. The prediction is presented in Table 15. A dramatic increase is predicted with the new HQ. 

The demand for taxi and FHV is expanded by more than four times, with the ridership of transit 

increased nearly three times. This prediction can act as a reference for policymakers to plan the 

improvement of infrastructure such as ensuring sufficient capacity for transit facilities nearby.  

 

Table 15. Mode share of Amazon workers in 2016 and 2028 

  
Driving Carpool  Transit Taxi  Bike  Walk  FHV Citi 

Bike 
Total 

Number of 
trips 

2016 6519 1262 10,716 266 176 2144 143 34 21,260 

2028 
without 
Amazon 

6749 1316 11,106 272 181 2220 145 37 22,026 

2028 
with 
Amazon 

20,081 3368 42,254 1393 848 3120 773 189 72,026 

Change in 
percentage 

2028 
without 
Amazon 

3% 4% 4% 2% 3% 3% 1% 8% 3% 

2028 
with 
Amazon 

208% 167% 294% 424% 382% 46% 441% 456% 239% 

 

 

A further advantage of using a synthetic population is that a time-of-day analysis can be 

easily conducted, as shown in Figure 27. The new HQ is predicted to increase total trips from 

5,000 to 8,000 in the morning peak and from 3,000 to 8,000 in the afternoon peak. Late night 

trips would also expand. 
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Figure 27. Time-of-day distribution of inbound and outbound trips at TAZ 362 in 2028 (a) 

without Amazon and (b) with Amazon. 

 

5.2 Scenario Two   

Citi Bike proposed plans in 2019 to expand its service area to double its size by 2023. The 

expansion plan is shown in Figure 28. We estimated the demand attracted by the expanded 

service assuming that the level of service of the system remains the same. The parameters 
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estimated for the bikeshare mode should still be applicable in the expanded system condition, 

with users from more zones having access to the mode. 

 

 

Figure 28. Planned Citi Bike service area expansion (source: Citi Bike, 2019). 
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We re-simulated the mode choices of the synthetic population with different Citi Bike service 

areas and presented the mode share in Table 16. With service area doubled, the demand for Citi 

bike also doubled, increasing from 0.15% (47,475 daily trips) to 0.30% (91,052 daily trips). When 

expanding the service area to the whole city, the increment of demand only increased to 0.48% 

(147,308 daily trips), which is about three times the original service demand. 

 

Table 16. Mode share from synthetic population under different expansion scenarios 

Mode  Driving Carpool  Transit Taxi  Bike  Walk  Citi Bike FHV 

Original 22.69% 5.39% 36.23% 2.12% 1.86% 30.63% 0.15% 0.92% 

2A: Citi Bike’s 
expansion plan 

22.68% 5.39% 36.16% 2.12% 1.85% 30.58% 0.30% 0.92% 

2B: Whole city 22.67% 5.37% 36.09% 2.11% 1.85% 30.51% 0.48% 0.92% 

 

A spatial analysis can be conducted since we model each individual that chooses Citi Bike for 

a trip. This is shown in Figure 29.  
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Figure 29. Distribution of synthetic daily Citi Bike trip densities per origin zone under (a) 

original service area, (b) Citi Bike’s expansion plan, and (c) the whole city as the service area. 

 

(a) 

(c) 

(b) 
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5.3 Scenario Three 

In the following sections, the scenarios all use the calibrated MATSim-NYC model as the base 

scenario. When running alternative scenarios to compare against a base scenario, the set of plans 

at the end of the base scenario runs for the population is used to initiate the new scenario run to 

represent their acquired knowledge of their options. 

NYC plans to implement a congestion pricing policy to charge vehicles entering Manhattan 

under 60th Street to relieve congestion and raise money to support public transit (Holland and 

Shah, 2019). The charge area is bounded with red lines in Figure 30. 

 

 

Figure 30. Charging area in Manhattan. 

 

We study the scenario using MATSim-NYC. The advantage of using MATSim-NYC to evaluate 

these scenarios is that the travelers can experience queue delays in a single day’s simulation due 
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to changes in spillback effects from the congestion pricing that cannot be captured using a static 

assignment model. Furthermore, the day-to-day adjustment in MATSim-NYC allows travelers to 

adjust their schedules and departure times, which is more realistic than a static model which 

forces travelers to, at best, substitute trips with other modes or routes.  Third, as the model is 

multi-agent and linked up with the experienced travel agendas on the dynamic traffic network, 

we can compute the output utility change to each traveler to compute the social welfare effect 

of a policy. This has powerful economic value to evaluating emerging transportation technologies 

and policies. 

The Regional Plan Association (RPA) published a report about the impacts of congestion 

pricing in Manhattan. Four different charging schemas were compared. We implemented the 

highest charging schema from that plan in our virtual test bed. Another schema tested is $14 per 

passenger vehicle according a new pilot program (Holland and Shah, 2019). The simulated 

charging schemas are presented in Table 17. All prices are charged two-way, which is consistent 

with RPA’s report. 

 

Table 17. Simulated charging schemas of congestion pricing 

Schema  1 2 

Peak (6-10AM, 2-8PM) $9.18  $14  

Off-peak (5-6AM, 10AM-2PM,8-11PM) $3.06  $3.06  

Night (11PM-5AM) $3.06  $3.06  

 

The congestion pricing was implemented using MATSim’s extension “Road Pricing”. The 

simulations were run on a desktop with Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz processors 

and 128GB RAM. Each implementation of schema ran with 100 iterations in MATSim. The 

computation time is approximately 15 hours per scenario.  

Considering the charging area is not the whole Manhattan, we use a different population 

segment definition to evaluate the impact of the policies. Two segments are defined as 

“Charging-related” vs. “Non-charging-related”. A person who has at least one trip related to the 

charging area belongs to the Charging-related segment (including travelers making trips 
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completely within the charging area without paying a cordon fee); otherwise, they belong to the 

Non-charging-related segment.  

The trips shift for people from charging-related segment as shown in Figure 31. A significant 

drop in car trips is found under both schemas, where the higher price leads to a larger drop. 

Compared to the 59,000 decrease of daily car trips from RPA, our simulation indicates a 127,000 

decline under the same schema (Schema 1). Trips of all modes except for transit and walk 

decreased after charging the congestion price. These outcomes are in line with expectations since 

Manhattan would become less congested and more people will use transit instead of car.  

The daily and annual revenues collected under each schema are calculated and presented in 

Table 18. The daily revenues are obtained from the simulation and the annual revenues are 

calculated by aggregating the daily revenues of weekdays through a year (261 days), with 4% 

legislated exemptions, $113M operating cost, and $30M deduction from a technical 

memorandum (RPA, 2019). The results are consistent with RPA’s projection, although our 

simulation reports double the reduction in cars shifted to other modes.  

  

 

Figure 31. Daily trip shifts after charging congestion price for charging-related segment 
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Table 18. Revenues collected under each schema 

 Schema 1 Schema 2 RPA's proposal 

Daily revenue 4.91M 6.75M N/A 

Annual 1.09B 1.55B 1.09B 

 

The changes in consumer surplus for travelers relative to the baseline scenario are estimated 

and presented in Table 19. When calculating the changes in people’s daily utilities, the utility of 

performing activities is excluded, i.e. the utility calculated by Eq. (4.2a) is subtracted from the 

daily utility. This is because that portion of the utility is not calibrated unless panel travel surveys 

are conducted over multiple weeks to observe changes in activity participation per individual 

(Chow and Nurumbetova, 2015). Here we only focus on the impact of congestion pricing on the 

travel disutility. First, people from both population segments (charging-related and non-

charging-related) have an increase in consumer surplus, which indicates a positive impact on 

people in NYC from congestion pricing. People from the charging-related segment benefit more 

than those from the non-charging-related segment, by an increase of 53 – 55%. This implies that 

the congestion pricing provides a net savings in travel times for all the travelers within the 

charging area that significantly overcompensates for the cost of the charge on people crossing it. 

The results endorse the decision of charging congestion price in Manhattan. Furthermore, the 

revenues collected from charging a congestion price can be used to improve social welfare, e.g. 

invest in the public transit system to improve the level of service, and suggest that redistribution 

of toll revenues should focus on outer boroughs transit service. Second, we see that Schema 2 

results in a lower net benefit than Schema 1. This implies that the $14 charge may be too high 

compared to the $9.18 charge, although it would further (incrementally) benefit folks in the 

charging area. This result suggests the importance of using policy tools like MATSim-NYC to help 

design the congestion pricing policy as it can offset benefits from one population segment against 

another. This finding would not have been possible using a static network policy tool. 

 

Table 19. Average change in daily consumer surplus ($) per traveler by segment 

 Charging-related Non-charging-related Citywide 

Schema 1 +21.99 +14.37 +16.52 

Schema 2 +22.01 +14.21 +16.41 
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Another finding from our analysis that is possible due to the use of an agent-based simulation 

is tracking the mode shifts of the car drivers under congestion pricing. The results are presented 

in Figure 32. About 72% of car trips are maintained, 15% shifted to transit, 10% switched to FHV 

and taxi.  

 

 

Figure 32. Mode shift of car drivers after charged congestion price under (a) Schema 1 (b) 

Schema 2. 

 

Based on the versatile output of MATSim, the simulated hourly volumes of each link are 

available. The spatial distributions of average hourly volume in AM peak hour (6AM – 10AM) 

before and after congestion pricing are shown in Figure 33. After charging congestion pricing, the 

volumes in midtown and downtown Manhattan have a slight decline, while the volumes in the 

area above 60th Street, which is outside the charging area, increase. The results are aggregated 

to daily average; specific times of day can be output. 
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Figure 33. Average hourly volume distribution (a) before congestion pricing and (b) under 

Schema 2. 

 

5.4 Scenario Four 

BQX is a proposed streetcar service connecting Astoria in Queens and Red Hook in Brooklyn, 

as shown in Figure 34. The city's Economic Development Corporation and NYC DOT have a plan 

(a) 

(b) 
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to release the final design by 2023 and finish construction in 2029 (Robbins, 2020). The BQX is 

anticipated to have an initial daily ridership of 50,000 and up to 90,000 after a few decades. 

According to the design report of BQX (BQX, 2018), the service time will be 5AM to 11PM, with 

five minutes headway in peak hours (6:30AM – 9:30AM; 4:30PM – 7:30PM) and ten minutes 

headway in off-peak hours. Assuming the travel speed of BQX is 8mph, we simulated the BQX 

with our test bed on a desktop with Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz processors and 

128GB RAM. The computation times are around 13 hours. 

 

 

Figure 34. Plan of the Brooklyn Queens Connector (source: BQX, 2019). 

The simulated daily ridership of BQX is 112,775, which is more than twice of the proposed 

daily ridership (50,000). The results of the simulation indicates that the BQX might be more 

attractive than expected. The simulated volume and proposed volume across all stations are 
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presented in Figure 35. The distribution of simulated volume is similar to the proposed volume 

although the magnitudes are much greater.  

 

 

Figure 35. Simulated volume and expected volume across all stations of BQX. 

 

The north-bound vehicle load profile in the morning peak hour is presented in Figure 36. The 

results show that the route’s peak load occurs around the 50th Ave – Vernon Blvd station. 
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Figure 36. Simulated north-bound load profile in AM peak. 

 

By tracking the agents, we see the mode shift of BQX riders in Figure 37. Most of the BQX 

riders switched from other transit routes. About 16% of passengers were drivers who gave up 

driving private car and shifted to BQX. This suggests that it’s primarily attracting transit users who 

find that BQX improves their journey’s level of service. The around 16% shift means that BQX 

would take 18,000 drivers off the road to take transit per day. 
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Figure 37. Mode shift of BQX riders. 
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Section 6: Further extension 

6.1. MATSim traffic flow model improvement 

Traffic flow model and its parameters have critical impacts on the simulation performance, 

in this study, we introduce a method to improve the default traffic flow model and calibrate its 

parameters in MATSim.  

MATSim uses queuing models to capture the queue formation, spillback and dissipation (e.g. 

point queue, spatial queue). Although the point queue and spatial queue model are mainly used 

in MATSim, however, the intra-link interaction is ignored because when a vehicle leaves the 

upstream end of a link, the space immediately becomes available, even if this is not a very realistic 

assumption from the traffic flow theory perspective. To address this problem, we modify the 

default traffic flow model in MATSim to incorporate more realistic link dynamics. Agarwal et al. 

(2018) integrated the link transmission model (LTM) model into the existing MATSim spatial 

queue model by introducing a concept called “backward traveling hole”, also known as the 

double-queue model. We extend the traffic flow model in Agarwal et al. (2018) by relaxing the 

assumption of a fix backward hole traveling speed by making the hole speed heterogeneous 

among links based on real traffic data.  

 In addition, due to the limitation of available traffic flow data in New York City, we propose 

a clustering-based calibration framework to calibrate the parameters of traffic flow model. We 

first employ a clustering algorithm to extract typical traffic patterns from link-based traffic speed 

profile. Using these clusters, traffic flow parameters of individual links belonging to a specific 

cluster can be calibrated using speed-flow data available for a subset of all the links in NY network.  

6.1.1. Data 

Historical traffic speed data is shared by INRIX with the approval of NYCDOT. INRIX is a 

private company that provides data for transportation research and city planning 

(http://inrix.com/). The speed data is aggregated to a 5 min time interval. Furthermore, to 

calibrate the parameter of a given traffic flow model, the relationships among traffic flow 𝑞, 

speed 𝑣 and density 𝑘 are needed. The speed-volume data from 281 links that are part of the 

NYC Midtown in Motion (MiM) project, which became operational in 2011, are used. The 

available sensor data is from a 110-square block area or “zone” from 2nd to 6th Avenues and 
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from 42nd to 57th streets. The link speed-flow data from the 281 segments were collected 

through Nov 1st to Nov 7th of 2011 in intervals of 1 minute.  

 

6.1.2. Modify the traffic flow model 

In Agarwal et al. (2018), the space freed from a leaving vehicle is called a “hole” and travels 

opposite to the direction of the traffic flow. In unsaturated conditions, flow increases linearly 

with density, while in saturated conditions, flow decreases linearly with density. A maximal value 

of flow is equal to:  

�̂�  =  
𝑣𝑓𝑣ℎ𝑜𝑙𝑒𝜌𝑗𝑎𝑚

𝑣𝑓  + 𝑣ℎ𝑜𝑙𝑒
 (6.1) 

where q̂ is the maximum flow, 𝑣𝑓 and 𝑣ℎ𝑜𝑙𝑒 are free flow speed and backward speed respectively, 

𝜌  is density, 𝜌𝑐  is critical density and 𝜌𝑗𝑎𝑚  is jam density. The hole’s travel time ( 𝑡ℎ𝑜𝑙𝑒 ) is 

calculated as: 𝑡ℎ𝑜𝑙𝑒 = 𝑙𝑒𝑓𝑓/𝑣ℎ𝑜𝑙𝑒 , where 𝑣ℎ𝑜𝑙𝑒  is the travel speed of the hole, and 𝑙𝑒𝑓𝑓  is the 

effective length of the vehicle.  

A constant hole speed of 15 km/h is assumed in Agarwal et al. (2018). We modify the model 

to relax this assumption and make the hole travel speed heterogeneous among links. The 

maximum density in MATSim equals one over the length of a vehicle (effective cell size attribute 

of the links element) for a single-lane link and needs to be multiplied with the number of lanes 

(permlanes attribute of the link element). Then under free speed condition (𝜌 ≤ 𝜌𝑐), the flow (𝑞) 

is 𝑞 = 𝑣𝑓  𝜌. If the link is congested (𝜌𝑐 ≤ 𝜌 ≤ 𝜌𝑗𝑎𝑚), the flow (𝑞) is 𝑞 = 𝑣ℎ𝑜𝑙𝑒   (𝜌𝑗𝑎𝑚  −   𝜌). 

At critical density 𝜌𝑐, the flow from the free-speed branch and congested branch will be equal:  

𝑣𝑓 𝜌𝑐   =   𝑣ℎ𝑜𝑙𝑒  (𝜌𝑗𝑎𝑚  −  𝜌𝑐)   (6.2) 

Thus, the backward hole traveling speed is estimated as: 

𝑣ℎ𝑜𝑙𝑒  =  𝜌𝑐 ∗ 𝑣𝑓 /(𝜌𝑗𝑎𝑚  −  𝜌𝑐) (6.3) 
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6.1.3. Clustering-based algorithm for parameter calibration 

We employ the hierarchical clustering algorithm to group links based on their speed profiles. 

The basic agglomerative hierarchical clustering algorithm is as follows: a) consider each of the 𝑛 

objects as a unique cluster; b) merge clusters based on their similarity measurement, Euclidean 

distance; 3) repeat step b repeatedly until a desired number of clusters is achieved. 

The three variables needed to be calibrated in the modified traffic flow model are free flow 

speed, flow capacity and critical density. Free-flow speed is “practically determined as the 

average speed of passenger cars in conditions of low traffic flow rates” (Erdelić et al., 2015). Since 

there are no explicit free-flow speed data available, we estimate the free-flow speeds using 

nighttime speeds from INRIX when traffic moves freely without congestion, where nighttime is 

defined as the time interval between 01:00h and 05:00h. The flow capacity is estimated by 

assigning the maximum value of flow crossing a given link. Then the flow capacity value is 

horizontally projected to the free-flow line in the triangular fundamental diagram. The 

intersection is the critical density, with the free-speed branch on the left side and congested 

branch on the right side. The hole travel speed is then obtained from Equation (6.3). 

 

6.1.4. Model performance discussion  

To test the performance of the modified model, we use 0.1% and 1% samples of the 8.2 

million synthetic population. In the configuration file of the simulation, we set the parameters of 

activities as default and the parameters of travel modes the same as the mode choice model in 

the synthetic population. The traffic speed data generated 9 representative clusters. The relative 

accuracy for each link is the difference of average link speed between simulated and observed 

data (INRIX speed data). Then the difference is averaged through all the links to obtain the 

average relative accuracy. 

The default model refers to the basic queue model in MATSim while the improved model 

refers to the modified model. We ran 20 iterations of the simulation for each scenario: a) 0.1% 

population with default model; b) 0.1% population with modified model c) 1% population with 

default model; d) 1% population with modified model. The result of this comparison is shown in 

Table 20.  
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Clearly, the results show that the improved traffic flow model with calibrated link parameters 

can significantly increase the simulation accuracy while having little impact on the overall 

computational time.   

Table 20. Performance of traffic flow model calibration 

 
Computation time 

(hh:mm:ss) 
relative error of link average speed  Improvement 

 
Default model Modified model Default model Modified model  

0.1% population 0:10:38 0:10:48 52.15% 26.47% 23.68% 
1%   population 1:10:17 1:16:43 47.86% 29.49% 18.37% 

 

6.2. Autonomous vehicle fleet 

Testing of Autonomous Vehicle (AV) in an urban setting can be cost prohibitive and 

sometimes fatal (Aupperlee, 2017). MATSim-NYC provides a cost-effective way to test AV routing 

and operating strategies in an urban environment. MATSim has shown promising results when 

simulating large-scale scenarios for transport planning with agent-based micro simulations in a 

reasonable time. It is able to handle not only the traffic patterns but also detailed descriptions at 

the single agent level (Balmer et al., 2009).  

MATSim can also be used to test the feasibility of AV fleet deployment (Hörl et al., 2019). 

The success of an AV operator can depend on the selection of its service area. Deploying few 

vehicles in areas of high demand might drastically increase the wait times of users and limit AV 

usage. A small fleet size will have smaller capital expenditures but inevitably increases wait times. 

An efficient use of vehicles restricts the number of empty VMT, but also increases wait times, as 

vehicles without a passenger on board cannot be relocated to high demand locations. As AV 

fleets are becoming a reality, there is need to address their operational efficiency in an urban 

environment through agent-based simulation like MATSim-NYC.  

The simulation of AV fleets or Autonomous Mobility-on-Demand (AMoD) (Hörl et al., 2019) 

in MATSim uses the Dynamic Vehicle Routing Package DVRP (Maciejewski et al., 2017). MATSim 

can simulate riders’ daily plan to assign a score according to the durations and distances covered 

in the mode, their arrival times, waiting times, their stay durations at an activity and other 

dimensions. We investigate the package in MATSim-NYC. 
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6.2.1. Methodology 

A typical simulation run using the AMoD extension in MATSim includes the steps depicted in 

Figure 38.  

 

 

Figure 38. Overview of the AMoD simulation process. 

 

The input to an autonomous mobility-on-demand simulation scenario consists of a network 

containing road information in the MATSim-native XML format. It includes all nodes and links 

including their spatial position and parameters such as the free-flow speed and link capacity. 

Furthermore, the scenario consists of a population of agents, each agent having travel and 

activity plans on the network. Custom data such as manually set link speed reductions, a public 

transportation network, cost models or other can be added to the scenario. Finally, a wide range 

of settings can be used to modify the scenario. These settings include for instance the choice of 

the AMoD dispatching logic or pricing structure. The AMoD dispatching logic defines how to 

handle requests by agents, who choose to use an AV service. Th pricing structure can either be 

implemented individually or can be based on a standard implementation, where one can define 

monetary costs per time and distance, as well as the billing intervals.  

A complete scenario is then processed using the AMoD extension in MATSim using the 

dispatching logic and pricing structure formulated in the input part. In addition to the MATSim 

output results, the AMoD extension creates a custom scenario viewer as displayed in Figure 39.  
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Figure 39. AMoD scenario visualization. 

 

6.2.2. Simulation results 

The simulation was run with a 0.1% sample population of NYC (about 8000 agents) and an 

autonomous fleet of 100 fleet vehicles to test its proof-of-concept for use in MATSim-NYC. The 

simulation results are presented in Figure 40 – 43.  
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Figure 40. Distribution of request per total travel time. 

 

Figure 41. Distribution of requests served by autonomous taxi. 
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Figure 42. Distribution of request per drive time. 

 

Figure 43. Distribution of requests per wait time. 
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6.3. Multimodal router for MATSim 

MATSim does not generate multimodal routes in its default package. However, multimodal 

travel, particularly in the context of Mobility-as-a-Service (MaaS), is rather important in cities like 

NYC (Djavadian and Chow, 2017b; Ma et al., 2019; Pantelidis et al., 2019). Trips combinations of 

one or more modes with walking, biking, transportation and driving. There are a few specialized 

open-source routing tools. We investigated R5, OpenTripPlanner (OTP), and the SBB-extension 

of MATSim. Using passenger information and transportation network provided, these routing 

engines are planning trips with the combination of different mode and time windows by 

multicriteria optimization. 

With the growing popularity of micro mobility services such as CitiBike and Escooter, we 

especially focused on applying intermodal access/egress routing, which is required for door to 

door routing. SBB-extension can capture not only the usage of transportation system and 

personal car, but also the behavior of each agent for access/egress to transit. We tried to add 

different modes for access/egress trips to the transit stations. 

6.3.1. R5 multi-modal router 

R5, “Rapid Realistic Routing on Real-world and Reimagined networks”, is a multi-modal 

routing engine developed by Conveyal1. It is an open-source project based on Java. The routing 

method of R5 is discussed in detail by Conway et al. (2017, 2018). On the basis of the Round-

Based Public Transit Routing (RAPTOR) algorithm, R5 adopted range RAPTOR with Multi-criteria 

pareto-optimal search to calculate the multi-modal routes.  

The R5 requires OpenStreetMap data as the road network and GTFS data as the transit 

network. The output is the multi-modal routes for a given OD pair. 

6.3.2. Open Trip Planner 

OTP is another open-source and cross-platform multimodal route planner written in Java. It 

computes the multimodal shortest path with several criteria: earliest arrival, fewest transfers, 

wheelchair accessibility, safety, elevation and so on. Compared with other routers, it is able to 

 
1 See details in https://github.com/conveyal/r5. 
 

https://github.com/conveyal/r5
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carry out analysis with amended transport data, such as amended GTFS data and modified 

network. It also included bike modes in multimodal routes, which is rare in route planners.  

The routing algorithm of OTP is A*, which is a derived from Dijkstra’s algorithm, with 

improvements in searching time. Raptor is also incorporated into OTP in 2018, which is able to 

search with multiple criteria, minimizing both arrival time and number of transfers. OTP has been 

implemented in multiple transportation agencies, including for New York State (see 511 

Rideshare, 2020). 

Figure 44 is the user interface of OTP implemented on the NYC road network. Users can 

either click on the map or enter coordinates to define the origin and destination.  

 

 

Figure 44. User interface of Open Trip Planner. 

 

In OTP, the route searching is restricted by user’s preferences. Users can define their 

preferred routes and banned routes, as well as their preferred departure/arrival time and modes. 

All the modes that can be selected from include: 

• Transit 
• Bus only 
• Rail only 
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• Airplane only 
• Walk only 
• Drive only 
• Park and Ride 
• Kiss and Ride 
• Bicycle only 
• Bike and Ride 
• Rented Bicycle 
• Transit and Rented Bicycle 

When a user selects the mode of “Transit”, he or she can define a preferred longest walking 

distance. When a user selects a mode with bike, it will ask the user to “drag” his or her preference 

between quickness, flatness and bike friendliness. With the above information, 3 itineraries are 

generated, which are the top 3 routes searched by the criteria defined by the user as shown in 

Figure 45. Except for using the interface, researchers can use R to generate routes automatically 

with the package “otpr”. 

 

 

Figure 45. A Sample Query of Open Trip Planner. 

 

The data that OTP needs as input includes transit data in GTFS format, street Infrastructure 

data from OpenStreetMap and elevation data from the National Elevation Dataset. If the modes 

associate with bikes are required, data on the distribution of bicycle facilities is also needed.  
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6.3.3. SBB-extension  

The MATSim SBB-extension is provided by Swiss Federal Railways (SBB, Schweizerische 

Bundesbahnen). It is also based on the RAPTOR algorithm and applies several optimizations. It 

acts as a replacement for the default transit router in MATSim, and also provides additional 

features. One of those additional features, intermodal access and egress, can be utilized to 

generate multi-modal trips. Be defining available modes for access and egress of a transit trip 

and related attributes (e.g. searching radius), the extension can calculate the multi-modal routes 

with transit as the major mode.  

6.3.4. Discussion  

After investigating all three multi-modal routers, here are our findings. First, R5 is still 

problematic to be implemented in the context of NYC. More efforts are needed to look into the 

coding side. OTP can generate multi-modal routes for given OD pairs in NYC under several criteria. 

However, since the OTP is an independent router from MATSim, further efforts are needed to 

incorporate it into the simulation of MATSim. Third, as an extension of MATSim, it is convenient 

to incorporate SBB-extension into MATSim simulation, which is better than the other two routers. 

However, the multi-modal routes from the SBB-extension are not real “multi-modal” routes. They 

are transit routes with multi-modal access and egress. There are still errors when implemented 

with the real road and transit networks in NYC.  

For next steps, our suggestion is to continue with the SBB-extension. Considering the 

compatibility of code, it might take much more effort to incorporate R5 and OTP with MATSim-

NYC, whereas there is no such concern for the SBB-extension as a MATSim extension. It would 

be more efficient to customize the SBB-extension to overcome the limitations mentioned before.  

 

6.4. Bike-sharing extension 

The simulation of bicycles and bike-sharing in MATSim is not incorporated in the default 

packages. The bike trips are simulated as teleportation in our baseline model. In other words, if 

an agent selects bike mode for a trip, the travel time would be calculated by the Euclidian 

distance divided by a predefined bike speed, instead of calculating based on the shortest path in 

network. However, since MATSim is an open-source transportation simulation toolkit, it is 

possible to extend MATSim to incorporate bicycle traffic and bike-sharing.  
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Dubernet and Axhausen (2014) designed a prototypical simulation framework for a bike 

sharing system and incorporated with MATSim. They conducted a case study in Zurich and 

analyzed four scenarios with different bike re-distribution strategies, i.e. no redistribution vs 

optimal re-distribution. The simulation was running with 10% sample population for 200 

iterations. Agents don’t generate new plans for the last 10 iterations. The results indicate a 

significant difference in demand depending on the re-distribution strategy.  

Ziemke et al. (2017) concentrated more on the bicycle traffic modeling in MATSim. The 

attributes of infrastructure were taken into consideration when simulating the decisions of 

cyclists. A more specific utility function was applied to cyclist in MATSim and a case study was 

conducted for the area near the campus of TU Berlin.  

Hebenstreit and Fellendorf (2018) developed a dynamic bike-sharing module within a 

multimodal context. The module can simulate station-based bike-sharing and incorporate the 

interaction with other transport modes, like transit. The within day reschedule for bike-sharing 

trips is also supported by the module.  

The extension of bike-sharing in MATSim is still under development and there is no module 

currently available. To simulate the bike-sharing system in the context of NYC, more efforts are 

needed to investigate the module development first.  

 

6.5. Urban data observatory 

NYU C2SMART has recognized the needs of a tool for sharing data and enhancing 

collaboration among researchers and practitioners, and developed a Common Innovation 

Platform (CIP). CIP provides an environment that allows two-way interaction with various 

communication and data tools by integrating four main components: A data storage system and 

analysis system, data repositories, project and task management tools, and a multifaceted 

collaborative project workspace. Each tool is combined through CIP using API capabilities into a 

single and easy navigable location.  

For the MATSim project, we are encouraged to utilize CIP in order to share the back data (e.g. 

synthetic population) and results (e.g. aggregated mode share, simulated volumes). C2SMART 

Urban Data Observatory (UDO) is offering an interactive analysis and visualization of data, using 

PostgreSQL server. The data and its results after performing various analyses can be displayed to 
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all users in a collaborative workspace simultaneously, and authorized users are capable of 

performing operations on the UDO server. Accordingly, the MATSim project data (transit 

schedule and synthetic population) will be made accessible in UDO for authorized users and the 

analysis results will be displayed allowing custom querying in public. For instance, the query 

interface will provide several filters for users to select their interested synthetic population, 

including ages, work industries, trip purpose, origin/destination TAZs, etc. The users can also 

obtain some analysis results through the query interface, like the ridership of one transit line, the 

volume in peak hours for some major links, etc.  
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Section 7: Technology Transfer, Dissemination, and Broader Impacts 

7.1 Technology Transfer 

We provide links to all the completed products we developed during this project as shown 

in Table 21. Each of the items in the table served on its own to transfer “new knowledge” or 

contributed to developing the product that did.  

Table 21. Delivered products 

Output Description 

Synthetic population Travel demand of NYC, including travel agendas, personal attributes and mode choices 

Calibrated time-
variant network 

Time-variant multi-modal network for MATSim, with link free speed factors and capacity 
factors calibrated 

SPSA calibration 
module 

SPSA calibration module integrated with MATSim to calibrate link capacity factors 

MATSim output 
analysis scripts 

Transfer MATSim output from xml to csv and analyze mode share, travel time, etc.  

Calibrated virtual test 
bed 

MATSim baseline model for 2016 

Urban Data 
Observatory 

Data sharing platform for C2SMART center 

 

7.2 Dissemination 

The virtual test bed project was presented in a workshop2 hosted by the National Socio-

Environmental Synthesis Center (SESYNC) of the University of Maryland in Annapolis, MD 

 
2  The topic of the workshop is “SESYNC Pursuit: People, Land, Water And Fish: Integrating Social and 

Environmental Models in the Chesapeake Watershed”. Organized by Center for Environmental Science, Horn Point 

Laboratory (UMCES), and the Center for Smart Growth Research and Education (NCSG) at the University of 

Maryland, funded by the National Science Foundation through the National Socio-Environmental Synthesis Center 

(SESYNC) of the University of Maryland as part of a research project. 
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(February 2019). The topic of the presentation is “Evaluating emerging transportation 

technologies and policies with a Network of Living Labs”. 

Another presentation was a guest talk by Brian He at ETH, Zurich (July 2019). The topic was 

“Evaluating emerging technologies and policies with a ‘Network of Living Labs’: Case of New York 

City”. 

A presentation was given by Dr. Chow to the International Chinese Transportation 

Professionals Association (ICTPA), US Northeast chapter, for their 25th Annual Meeting on 

October 5th, 2019. The topic was “A simulation-as-a-service ecosystem for evaluating mobility 

technologies and policies.  

The work was presented by Brian He and Dr. Chow to local agencies and practitioners in a 

webinar “Open Source Multi-Agent Virtual Simulation Testbed – Applications for Congestion 

Pricing and COVID-19 Pandemic Recovery”. The webinar link can be found here:  

https://www.youtube.com/watch?v=L4AMnFrz9kw. 

Four papers were prepared directly as an output of the MATSim-NY tool. The first one 

“Evaluation of city-scale built environment policies in New York City with an emerging-mobility-

accessible synthetic population” is under revision. Another paper “Calibration, validation, and 

application of multi-agent simulation test bed to New York City emerging transportation policies 

and technologies” is in preparation for submission to a journal. A third paper, “Traffic flow model 

calibration for an agent-based traffic simulation model applied in New York City”, was accepted 

for presentation at DTA2020 (which was subsequently postponed due to COVID-19). A fourth 

paper on AV deployment optimization is being prepared entitled “Simulation-based optimization 

of autonomous taxi fleet service area design”.  

Several other papers were also prepared as part of the study of multimodal transport and 

emerging technologies for developing the tool during the study. 

 

 

 

 
 

https://www.youtube.com/watch?v=L4AMnFrz9kw&feature=emb_logo
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Papers: 

• He, B. Y., Zhou, J., Ma, Z., Chow, J. Y. J., Ozbay, K., Evaluation of city-scale built 

environment policies in New York City using an emerging mobility-accessible synthetic 

population, working paper. 

• He, B. Y., Zhou, J., Ma, Z., Wang, D., Sha, D., Lee, M., Chow, J. Y. J., Ozbay, K., Calibration, 

validation, and application of multi-agent simulation test bed to New York City emerging 

transportation policies and technologies, working paper. 

• Wang, D., Ozbay, K., He, B.Y., Shen, B.Y., Chow, J.Y.J., 2020. Traffic flow model calibration 

for an agent-based traffic simulation model applied in New York City, Proc. DTA2020, 

Seattle, WA. 

• Zhou, J., Chow, J.Y.J., Simulation-based optimization of autonomous taxi fleet service area 

design, working paper. 

• Yoon, G., & Chow, J. Y. (2020). Unlimited-ride bike-share pass pricing revenue 

management for casual riders using only public data. International Journal of 

Transportation Science and Technology, 9(2), 159-169. 

• Caros, N. S., & Chow, J. Y. (2020). Effects of violent crime and vehicular crashes on active 

mode choice decisions in New York City. Travel Behaviour and Society, 18, 37-45. 

• Jung, J. Y., & Chow, J. (2019). Large-scale simulation-based evaluation of fleet 

repositioning strategies for dynamic rideshare in New York City (No. 2019-01-0924). SAE 

Technical Paper. 

• Jung, J., & Chow, J. Y. (2019). Effects of charging infrastructure and non-electric taxi 

competition on electric taxi adoption incentives in new york city. Transportation Research 

Record, 2673(4), 262-274. 

• Allahviranloo, M., & Chow, J. Y. (2019). A fractionally owned autonomous vehicle fleet 

sizing problem with time slot demand substitution effects. Transportation Research Part 

C: Emerging Technologies, 98, 37-53. 

• Lee, M., Chow, J.Y.J., Yoon, G., He, B.Y., 2019. Forecasting e-scooter competition with 

direct and access trips by mode and distance in New York City, 99th Annual Meeting of 

the TRB, https://arxiv.org/abs/1908.08127. 

• Rath, S., Chow, J. Y. J., 2019. Air Taxi Skyport Location Problem for Airport Access, 

https://arxiv.org/abs/1904.01497. 

• Liu, Q., Chow, J.Y.J., A schedule-based dynamic transit passenger flow estimator using 

stop count data, working paper. 

https://arxiv.org/abs/1908.08127
https://arxiv.org/abs/1904.01497
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7.3 Broader Impacts 

In addition to the direct dissemination and technology transfer, this research has led to a 

number of broader impacts. 

The work has also been used in support of two other projects. The first is the C2SMART 

project on “Simulation and Analytical Evaluation of Bus Redesign Alternatives in Transit Deserts 

with Ride-hail Presence” by Dr. Chow in collaboration with Dr. Goldwyn at the Marron Institute. 

That study makes use of the MATSim-NYC model to evaluate bus networks in Brooklyn. A second 

project is the C2SMART study of NYC under COVID-19 (http://c2smart.engineering.nyu.edu/covid-

19-update-2) which uses MATSim-NYC to understand travel behavior pre- and post-COVID 

pandemic.  

 

Student training and involvement: Several students have portions of their dissertations based 

on this project: Brian Yueshuai He, Jinkai Zhou, and Ding Wang. Through the Summer 

Undergraduate Research Program, several students have been trained as well: Matthew Shen, 

Carol Shlyakhova, and Ziyi Ma. Ziyi has gone on to work as a graduate researcher in support of 

this project and the bus redesign project while completing his MS degree. In addition to the main 

research team, we participated in the ARISE program to expose K-12 STEM students to this 

research and other projects from our lab. Material from this project have been included in Dr. 

Chow’s graduate and undergraduate courses; for example, students make use of the OD demand 

queried from the synthetic population. This includes the use of the data for a Capstone project 

at CUSP working with startup company Dollaride from the Urban Future Labs.  

 The data has also supported the MS thesis topics for Mengyun Li (school student locations) 

and Yu Ching Emily Chao (parking activity in Manhattan). 

 

Public engagement: The team presented our work at the NYU Tandon Research Expo3, which 

exposes our project to the local community as well as to other students at NYU Tandon. The 

webinar “Open Source Multi-Agent Virtual Simulation Testbed – Applications for Congestion 

 
3 https://engineering.nyu.edu/events/2019/05/03/2019-research-expo 

http://c2smart.engineering.nyu.edu/covid-19-update-2
http://c2smart.engineering.nyu.edu/covid-19-update-2
https://engineering.nyu.edu/events/2019/05/03/2019-research-expo
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Pricing and COVID-19 Pandemic Recovery” has been made available to the public through 

Youtube.  

 

Industry engagement: The team has presented the research to industry through the 

dissemination efforts mentioned above. In addition, the COVID impact study using MATSim-NYC 

has been presented to ITS-NY members as part of a Continuing Education program through 

Professional Development Hours. NYCDOT training workshops held each year include material 

from the MATSim-NYC model. 

 

  



 

  Multi-agent virtual simulation test bed ecosystem   83 

References 

511 Rideshare (2020). https://511nyrideshare.org/web/511ny-rideshare/trip-planner, last accessed June 5, 2020. 

Abar, S., Theodoropoulos, G. K., Lemarinier, P., & O’Hare, G. M. P. (2017). Agent Based Modelling and Simulation 
tools: A review of the state-of-art software. Computer Science Review. 
https://doi.org/10.1016/j.cosrev.2017.03.001 

Agarwal, A., Lämmel, G., & Nagel, K. (2018). Incorporating within link dynamics in an agent-based computationally 
faster and scalable queue model. Transportmetrica A: Transport Science, 14(5-6), 520-541.  

Agarwal, A., Zilske, M., Rao, K. R., & Nagel, K. (2015). An elegant and computationally efficient approach for 

heterogeneous traffic modelling using agent based simulation. Procedia Computer Science, 52, 962-967. 

Auld, J., Hope, M., Ley, H., Sokolov, V., Xu, B., & Zhang, K. (2016). POLARIS: Agent-based modeling framework 
development and implementation for integrated travel demand and network and operations 
simulations. Transportation Research Part C: Emerging Technologies, 64, 101-116. 

Aupperlee, A. (2017). Uber driver, self-driving software not at fault in Pittsburgh crash, company determines. Trib 
Live. 

Balanced Transportation Analyzer. Retrieved from https://nurturenature.org/pages/balanced-transportation-
analyzer. 

Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., & Nagel, K. (2009). MATSim-T: Architecture and 
Simulation Times. In Multi- Agent Systems for Traffic and Transportation Engenieering. 

Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., & Nagel, K. (2009). MATSim-T: Architecture and 
simulation. In A. L. C. Bazzan & F. Klugl (Eds.), Multi-agent systems for traffic and transportation engineering 
(pp. 57–78). Hershey, PA: IGI Global. 

Becker, H., Balac, M., Ciari, F., & Axhausen, K. W. (2020). Assessing the welfare impacts of shared mobility and 
Mobility as a Service (MaaS). Transportation Research Part A: Policy and Practice, 131, 228-243. 

Bierlaire, M. (2018). PandasBiogeme: a short introduction. Technical report TRANSP-OR 181219. Transport and 
Mobility Laboratory, ENAC, EPFL. 

Bonabeau, E. (2002). Agent-Based Modeling: Methods and Techniques for Simulating Human Systems. PNAS, Vol. 
99, No. 3, 2002a.  

BQX. (2018). BQX Completion of Conceptual Design Report. Retrieved August, 2019 from http://www.bqx.nyc/wp-
content/uploads/2018/09/BQX_Completion_of_Conceptual_Design_Report_2018.08.pdf. 

BQX. (2019). Retrieved August, 2019 from http://www.bqx.nyc. 

Bradley, M., Bowman, J. L., & Griesenbeck, B. (2010). SACSIM: An applied activity-based model system with fine-
level spatial and temporal resolution. Journal of Choice Modelling, 3(1), 5–31.  

Brinckerhoff, P. (2014). 2010 Base Year Update and Validation of the NYMTC New York Best Practice Model. 
Retrieved from https://www.nymtc.org/LinkClick.aspx?fileticket=8WgNz6e-6dY=&portalid=0 

Cetin, N., Burri, A., & Nagel, K. (2003). A parallel queue model approach to traffic microsimulations. Paper presented 
at the Transportation Research Board 82nd Annual Meeting, Washington, DC.  

Chernick, M. R., & LaBudde, R. A. (2014). An introduction to bootstrap methods with applications to R. John Wiley & 
Sons. 

Chow, J. Y. J. (2018). Informed Urban Transport Systems: Classic and Emerging Mobility Methods toward Smart Cities. 
Elsevier. 

Chow, J. Y. J., & Djavadian, S. (2015). Activity-based market equilibrium for capacitated multimodal transport 

https://511nyrideshare.org/web/511ny-rideshare/trip-planner
https://doi.org/10.1016/j.cosrev.2017.03.001


 

  Multi-agent virtual simulation test bed ecosystem   84 

systems. Transportation Research Part C: Emerging Technologies, 59, 2-18. 

Chow, J. Y. J., & Nurumbetova, A. E. (2015). A multi-day activity-based inventory routing model with space–time–
needs constraints. Transportmetrica A: Transport Science, 11(3), 243-269. 

Chow, J. Y. J., & Recker, W. W. (2012). Inverse optimization with endogenous arrival time constraints to calibrate the 
household activity pattern problem. Transportation Research Part B: Methodological, 46(3), 463-479. 

Ciari, F., Balac, M., & Axhausen, K. W. (2016). Modeling carsharing with the agent-based simulation MATSim: State 
of the art, applications, and future developments. Transportation Research Record, 2564(1), 14-20. 

Cich, G., Knapen, L., Maciejewski, M., Bellemans, T., & Janssens, D. (2017). Modeling demand responsive transport 
using SARL and MATSim. Procedia Computer Science, 109, 1074-1079. 

Conway, M. W., Byrd, A., & van der Linden, M. (2017). Evidence-based transit and land use sketch planning using 
interactive accessibility methods on combined schedule and headway-based networks. Transportation 
Research Record, 2653, 45-53. https://doi.org/10.3141/2653-06 

Conway, M. W., Byrd, A., & van Eggermond, M. (2018). Accounting for uncertainty and variation in accessibility 
metrics for public transport sketch planning. Journal of Transport and Land Use, 11(1). 
https://doi.org/10.5198/jtlu.2018.1074 

Dennis, J. E., and D. J. Schnabel. (1989). A view of unconstrained optimization. Handbooks in Operation Research 
and Management Science (G.L. Nemhauser et al., Eds), Vol. 1, 1989, pp. 1-72. 

Department of City Planning. (2015). NYC Open Data. Retrieved May 1, 2019, from 
https://data.cityofnewyork.us/Housing-Development/Public-Use-Microdata-Areas-PUMA-/cwiz-gcty 

Dia, H. (2002). An Agent-Based Approach to Modeling Driver Route Choice Behavior Under the Influence of Real- 
Time Information. Transportation Research Part C, Vol. 10, 2002, pp. 331–349. 

Djavadian, S., & Chow, J. Y. J. (2017a). Agent-based day-to-day adjustment process to evaluate dynamic flexible 
transport service policies. Transportmetrica B: Transport Dynamics, 5(3), 281-306. 

Djavadian, S., & Chow, J. Y. J. (2017b). An agent-based day-to-day adjustment process for modeling ‘Mobility as a 
Service’with a two-sided flexible transport market. Transportation research part B: methodological, 104, 36-57. 

Dobler, C. and K. W. Axhausen (2011) Design and implementation of a parallel queue-based traffic flow simulation, 
Working Paper, 732, IVT, ETH Zurich, Zurich. 

Dubernet, T. and K.W. Axhausen (2014) A multiagent simulation framework for evaluating bike redistribution 
systems in bike sharing schemes, Arbeitsberichte Raum- und Verkehrsplanung, 1010, IVT, ETH Zurich, Zurich. 

Erath, A and Chakirov, A. 2016. Singapore. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport 
Simulation MATSim, Pp. 379–382. London: Ubiquity Press. DOI: http://dx.doi.org/ 10.5334/baw.57. License: CC-
BY 4.0  

Erdelić, T., Vrbančić, S., & Rošić, L. (2015). A model of speed profiles for urban road networks using g-means 
clustering. Paper presented at the 2015 38th International Convention on Information and Communication 
Technology, Electronics and Microelectronics (MIPRO). 

GAO (2018). Public transit partnerships: Additional information needed to clarify data reporting and share best 
practices. GAO-18-539, U.S. Government Accountability Office. 

Goulias, K. G., Bhat, C. R., Pendyala, R. M., Chen, Y., Paleti, R., Londuri, K. C., et al. (2011). Simulator of activities, 
greenhouse emissions, networks, and travel (SimAGENT) in southern California. Paper presented at the 
Transportation Research Board 91st Annual Meeting, Washington, DC.  

Haglund, N., Mladenović, M. N., Kujala, R., Weckström, C., & Saramäki, J. (2019). Where did Kutsuplus drive us? Ex 

post evaluation of on-demand micro-transit pilot in the Helsinki capital region. Research in Transportation 

Business & Management, 100390. 

https://doi.org/10.3141/2653-06


 

  Multi-agent virtual simulation test bed ecosystem   85 

Hebenstreit, C., & Fellendorf, M. (2018). A dynamic bike sharing module for agent-based transport simulation, within 

multimodal context. Procedia computer science, 130, 65-72. 

Hidas, P. (2002). Modeling Lane Changing and Merging in Microscopic Traffic Simulation. Transportation Research 
Part C, Vol. 10, 2002, pp. 351–371.  

Holland and Shah. (2019, December 4). Amazon, UPS and DHL are testing cargo bikes in New York City. Retrieved 
from https://www.cnbc.com/2019/12/04/amazon-ups-and-dhl-are-testing-cargo-bikes-in-new-york-city.html 

Hörl, S., Ruch, C., Becker, F., Frazzoli, E., & Axhausen, K. W. (2019). Fleet operational policies for automated mobility: 
A simulation assessment for Zurich. Transportation Research Part C: Emerging Technologies. 
https://doi.org/10.1016/j.trc.2019.02.02 

Horni, A and Nagel, K. 2016. More About Configuring MATSim. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The 
Multi-Agent Transport Simulation MATSim, Pp. 35–44. London: Ubiquity Press. DOI: 
http://dx.doi.org/10.5334/baw.4. License: CC-BY 4.0  

Horni, A, Nagel, K and Axhausen, K W. (2016). Introducing MATSim. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) 
The Multi-Agent Transport Simulation MATSim, Pp. 3–8. London: Ubiquity Press. DOI: 
http://dx.doi.org/10.5334/baw.1. License: CC-BY 4.0. 

JSOM. (2018). Available at https://josm.openstreetmap.de. 

Kang, J. E., Chow, J. Y. J., & Recker, W. W. (2013). On activity-based network design problems. Transportation 
Research Part B: Methodological, 57(C), 398-418. 

Konduri, K. C., You, D., Garikapati, V. M., & Pendyala, R. M. (2016). Enhanced synthetic population generator that 
accommodates control variables at multiple geographic resolutions. Transportation Research Record: Journal 
of the Transportation Research Board, (2563), 40-50. 

Lam, T. C., & Small, K. A. (2001). The value of time and reliability: measurement from a value pricing 
experiment. Transportation Research Part E: Logistics and Transportation Review, 37(2-3), 231-251. 

LIC Development MOU. Long Island City Development Project, Attachment A. 
https://d39w7f4ix9f5s9.cloudfront.net/4d/db/a54a9d6c4312bb171598d0b2134c/new-york-agreement.pdf. 
Accessed Nov 12. 

Macal, C. M., & North, M. J. (2006b). Tutorial on agent-based modeling and simulation Part 2: How to model with 
agents. Proceedings of the 2006 Winter Simulation Conference, Monterey, CA. 

Maciejewski, M., Bischoff, J., Hörl, S., & Nagel, K. (2017). Towards a testbed for dynamic vehicle routing algorithms. 
Communications in Computer and Information Science. https://doi.org/10.1007/978-3-319-60285-1_6 

Major Citi Bike Expansion Map Revealed. Citi Bike. https://www.citibikenyc.com/blog/major-citi-bike-expansion-
map-revealed. Accessed July 28,2019. 

MARG (2016) PopGen: Synthetic Population Generator [online]. Mobility Analytics Research Group. Available 
at: http://www.mobilityanalytics.org/popgen.html, Accessed [September 2018].  

Metropolitan Transportation Authority. (2018). Average Weekday Subway Ridership. Retrieved December 2019 
from http://web.mta.info/nyct/facts/ridership/ridership_sub.html. 

Nagel, K., Beckman, R. L., & Barrett, C. L. (1999). TRANSIMS for transportation planning. Paper presented at the 6th 
International Conference on Computers in Urban Planning and Urban Management, Franco Angeli, Milano, Italy.  

Nagel, K, Kickho ̈fer, B, Horni, A and Charypar, D. 2016. A Closer Look at Scoring. In: Horni, A, Nagel, K and Axhausen, 
K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 23–34. London: Ubiquity Press. DOI: 
http://dx.doi.org/10.5334/baw.3. License: CC-BY 4.0  

Nahmias-Biran, B.H., Oke, J.B., Kumar, N., Basak, K., Araldo, A., Seshadri, R., Akkinepally, A., Lima Azevedo, C. and 
Ben-Akiva, M., 2019. From Traditional to Automated Mobility on Demand: A Comprehensive Framework for 

https://doi.org/10.1016/j.trc.2019.02.02
http://web.mta.info/nyct/facts/ridership/ridership_sub.htm


 

  Multi-agent virtual simulation test bed ecosystem   86 

Modeling On-Demand Services in SimMobility. Transportation Research Record, p.0361198119853553. 

NBC, 2019. Amazon opts out of building New York City headquarters. NBC News, 
https://www.nbcnews.com/tech/tech-news/amazon-opts-out-building-new-york-city-headquarters-n971636, 
February 14. 

Neumann, A. 2016. Berlin I: BVG Scenario. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport 
Simulation MATSim, Pp. 369–370. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/ baw.53. License: CC-
BY 4.0  

New York Best Practice Model. Retrieved from https://www.nymtc.org/Data-and-Modeling/New-York-Best-
Practice-Model-NYBPM. 

New York City Department of Transportation. (2016). 2016 New York City Bridges Traffic Volumes. Retrieved 
December 2019 from http://www.nyc.gov/html/dot/downloads/pdf/nyc-bridge-traffic-report-2016.pdf.  

New York City Department of Transportation. (2019). Traffic Volume Counts (2014-2018). Retrieved December 2019 
from https://catalog.data.gov/dataset/traffic-volume-counts-2014-2018. 

New York Metropolitan Transportation Council. 2040 SED Forecasts. New York, US. Transportation Information 
Gateway. Accessed on (September,8,2018) at https://tig.nymtc.org/views/24/table 

New York Metropolitan Transportation Council. 2010/2011 Regional Household Travel Survey. New York, US. 
Transportation Information Gateway. Accessed on (June, 1, 2017) at 
https://www.nymtc.org/Portals/0/Pdf/SED/Excel.zip?ver=2016-05-26-130138-000 

Pantelidis, T., Chow, J.Y.J., Rasulkhani, S., 2019. A path-based many-to-many assignment game to model Mobility-
as-a-Service market networks, arXiv preprint arXiv:1911.04435. 

Regional Plan Association. (2019). Congestion Pricing in NYC: Getting it right. Retrieved November, 2019 from 
https://www.rpa.org/publication/congestion-pricing-in-nyc-getting-it-right. 

Rieser, M., Dobler, C., Dubernet, T., Grether, D., Horni, A., Lammel, G., Wariach, R., Zilske, M., Axhausen, K.W. & 

Nagel, K. (2014). MATSim user guide. Zurich: MATSim. 

Rieser, M, Horni, A and Nagel, K. (2016). Scenarios Overview. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The 
Multi-Agent Transport Simulation MATSim, Pp. 367–368. London: Ubiquity Press. DOI: 
http://dx.doi.org/10.5334/baw.52. License: CC-BY 4.0. 

Rieser-Schu ̈ssler, N, Bo ̈sch, P M, Horni, A and Balmer, M. 2016. Zu ̈rich. In: Horni, A, Nagel, K and Axhausen, K W. 
(eds.) The Multi-Agent Transport Simulation MATSim, Pp. 375–378. London: Ubiquity Press. DOI: 
http://dx.doi.org/10.5334/baw.56. License: CC-BY 4.0  

Robbins, C. (Jan, 10th, 2020). De Blasio's Still Pushing The $2.7 Billion Streetcar Plan You Probably Forgot About. The 
Gothamist. Retrieved from https://gothamist.com/news/bqx-streetcar-nyc-to-shelbyville. 

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407. 

Rothfeld, R., Balac, M., Ploetner, K. O., & Antoniou, C. (2018). Agent-based simulation of urban air mobility. In 2018 
Modeling and Simulation Technologies Conference (p. 3891). 

Shaheen, S., Cohen, A., & Jaffee, M. (2018). Innovative Mobility: Carsharing Outlook. UC Berkeley: Transportation 
Sustainability Research Center. http://dx.doi.org/10.7922/G2CC0XVW Retrieved from 
https://escholarship.org/uc/item/49j961wb 

Small, K. (1982). The Scheduling of Consumer Activities: Work Trips. The American Economic Review, 72(3), 467-479. 
Retrieved June 2, 2020, from www.jstor.org/stable/1831545 

Spall, J. C. (1988). A stochastic approximation algorithm for large-dimensional systems in the Kiefer-Wolfowitz 
setting. Presented at the 27th Conference on Decision and Control, Austin, Texas, USA, 1988. 

https://catalog.data.gov/dataset/traffic-volume-counts-2014-2018
https://gothamist.com/news/bqx-streetcar-nyc-to-shelbyville
https://escholarship.org/uc/item/49j961wb


 

  Multi-agent virtual simulation test bed ecosystem   87 

Spall, J. C. (1998). An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins 
APL Technical Digest, Vol. 19, 1998b, pp. 482-492. 

Spall, J. C. (1998). Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE 
Transactions on Aerospace and Electronic Systems, Vol. 34, No. 3, 1998a, pp. 817-823. 

U.S. Census Bureau; 2016 Census Summary File 1; Tables P1 and QT-P1; generated by John Smith; using American 
FactFinder; <http://factfinder.census.gov>; (12 August 2018). 

U.S. Census Bureau. (2018). LEHD Origin-Destination Employment Statistics Data (2002-2015) [computer file]. 
Washington, DC: U.S. Census Bureau, Longitudinal-Employer Household Dynamics Program [distributor], 
accessed on {8 September 2018} at https://lehd.ces.census.gov/data/#lodes. LODES 7.3 

Von Neumann, J. (1966). Theory of Self-Reproducing Automata. Edited by A. W. Burk. Urbana: University of Illinois 
Press. 

Wong, Y. Z., Hensher, D. A., & Mulley, C. (2020). Mobility as a service (MaaS): Charting a future 
context. Transportation Research Part A: Policy and Practice, 131, 5-19. 

Yang, H. (1999). System optimum, stochastic user equilibrium, and optimal link tolls. Transportation Science. 
https://doi.org/10.1287/trsc.33.4.354 

Yu, M., and W. D. Fan. (2017). Calibration of microscopic traffic simulation models using metaheuristic algorithms. 
International Journal of Transportation Science and Technology, Vol. 6, 2017, pp. 63-77. 

Zhang, L. (2006). An Agent-Based Behavioral Model of Spatial Learning and Route Choice. Presented at 85th Annual 
Meeting of the Transportation Research Board, Washington, D.C., 2006. 

Zheng, H., Son, Y. J., Chiu, Y. C., Head, L., Feng, Y., Xi, H., ... & Hickman, M. (2013). A primer for agent-based simulation 
and modeling in transportation applications (No. FHWA-HRT-13-054). United States. Federal Highway 
Administration. 

Ziemke, D. 2016. Berlin II: CEMDAP-MATSim-Cadyts Scenario. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The 
Multi-Agent Transport Simulation MATSim, Pp. 371–372. London: Ubiquity Press. DOI: http:// 
dx.doi.org/10.5334/baw.54. License: CC-BY 4.0  

Ziemke, D., Metzler, S., & Nagel, K. (2017). Modeling bicycle traffic in an agent-based transport simulation. Procedia 

Computer Science, 109, 923-928. 


