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Abstract7

This paper investigates two fundamental questions related to safety and insurance in8

the age of automation. First, we touch upon the question of safety and liability under9

infrastructure-assisted automated driving. In such an environment, automakers provide ve-10

hicle automation technology while infrastructure service providers (ISSPs) provide smart in-11

frastructure services. Additionally, customers can receive coverage for accidents from either12

of these actors but also from legacy auto insurers. We investigate the effect of market structure13

on safety and accident coverage and show that an integrated monopoly provides full coverage14

and fully accounts for accident costs when choosing safety levels. However, in the Nash set-15

ting, even though full coverage obtains, lack of coordination leads to partial internalization of16

accident costs by the automaker. Moreover, multiple equilibria might exist, some of them un-17

desirable. We show that, both in the presence and absence of legacy insurance, an appropriate18

liability rule can induce optimal safety levels under the Nash setting. Our second question19

concerns itself with the role of legacy auto insurance in the age of infrastructure-assisted au-20

tomated driving. Our analysis shows that the industry is not necessary for optimal coverage21

when the cost of accidents is known in advance and all possible accident scenarios are con-22

tractible. In fact, their presence can even harm safety, even though it ensures full coverage for23

accidents. However, when only insurance contracts with capped liability for automakers and24

ISSPs are available, we cannot rule out that customers benefit and purchase insurance from25

legacy insurers. Thus, the disappearance of the industry in the age of automated driving is26

not a foregone conclusion.27
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Abstract7

This paper investigates two fundamental questions related to safety and insurance in8

the age of automation. First, we touch upon the question of safety and liability under9

infrastructure-assisted automated driving. In such an environment, automakers provide ve-10

hicle automation technology while infrastructure service providers (ISSPs) provide smart in-11

frastructure services. Additionally, customers can receive coverage for accidents from either12

of these actors but also from legacy auto insurers. We investigate the effect of market structure13

on safety and accident coverage and show that an integrated monopoly provides full coverage14

and fully accounts for accident costs when choosing safety levels. However, in the Nash set-15

ting, even though full coverage obtains, lack of coordination leads to partial internalization of16

accident costs by the automaker. Moreover, multiple equilibria might exist, some of them un-17

desirable. We show that, both in the presence and absence of legacy insurance, an appropriate18

liability rule can induce optimal safety levels under the Nash setting. Our second question19

concerns itself with the role of legacy auto insurance in the age of infrastructure-assisted au-20

tomated driving. Our analysis shows that the industry is not necessary for optimal coverage21

when the cost of accidents is known in advance and all possible accident scenarios are con-22

tractible. In fact, their presence can even harm safety, even though it ensures full coverage for23

accidents. However, when only insurance contracts with capped liability for automakers and24

ISSPs are available, we cannot rule out that customers benefit and purchase insurance from25

legacy insurers. Thus, the disappearance of the industry in the age of automated driving is26

not a foregone conclusion.27

28

Keywords - Driving automation, automated vehicles, infrastructure-assisted automated driving,29

safety, insurance30

1 Introduction31

Over the past decade, the development of automated vehicles has generated a lot of interest and32

has provided a glimpse into an exciting future. In an environment with fully automated vehicles,33
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travel will become more convenient, accessible, and time-effective. However, despite tremendous1

progress (e.g.: Level 2 and Level 3 vehicles (Tucker, Sean, 2022; Communications, 2022), driver-2

less taxi services (Elias, 2022)), several challenges (e.g.: weather-related issues; infrastructure3

changes; interactions with human-driven vehicles) remain to achieve that vision. To address4

these challenges, researchers, public agencies (FHWA, 2021), and private investors (Grinell, 2020;5

Hertz, 2022) have considered investing in infrastructure to assist the driving task. Such efforts in6

digitalization–the equipping of infrastructure to support automated driving–could lead to what7

we termed, in a recent article, vehicle-infrastructure cooperation (Vignon et al., 2022). In this8

vision, “both the level of automation in the future fleet and the level of digitalization in the future infras-9

tructure will be heterogeneous” (Vignon et al., 2022). We analyzed such a paradigm and showed10

that a) it can be socially efficient due to the heterogeneous nature of travel decisions and b) co-11

operation between automakers and infrastructure support service providers (ISSPs) is preferable12

to competition between these two entities.13

This paper further investigates vehicle-infrastructure cooperation from the perspective of14

safety, liability, and insurance. Indeed, one of the key benefits that will accrue to customers15

through automation and digitalization is safety. For example, using National Highway Traffic16

Safety Administration (NHTSA) data, Fagnant and Kockelman (2015) identify that 90 % of traffic17

accidents involve human error. When considering the substantial costs of crashes to society–18

$226 billion in 2005 (2021 dollars) according to Cambridge Systematics (2008)–improved safety19

resulting from vehicle automation would generate enormous savings to customers and society in20

general. Moreover, most of the remaining challenges in developing automated vehicles revolve21

around safety–as discussed in the introduction to Vignon et al. (2022)–and research shows that22

customers have high expectations for automated vehicle safety (Shariff et al., 2021; Shariff, 2021).23

Importantly, after a series of road incidents involving automated vehicles, regulators are also24

starting to show concerns about automation technology’s safety and readiness for commercial-25

ization (Elliott, 2021). Thus, it appears that finding cost effective means to address the remaining26

safety concerns of automated vehicles is critical if automakers want to encourage adoption.27

Additionally, though automated vehicles will increase safety, we are unlikely to see accident-28

free roads. Indeed, vehicles and infrastructure could still malfunction; pedestrians are still in-29

dependent agents who can interfere with vehicle operation; and human-driven vehicles (HDVs)30

will co-exist for a long period of time with AVs, potentially leading to more crashes than in an31

AV-free environment since HDVs might reduce their level of care (Chatterjee and Davis, 2013;32

Elvik, 2014; Di et al., 2020). In this context, one might ask who should bear the costs for accidents33

in which an AV is involved. Currently, under tort law, automakers are liable when negligence34

or a lack of reasonable care in the design and manufacturing of their vehicles is shown to be the35

cause of an accident. Otherwise, customers assume the driving risks: they are responsible for36

covering damages resulting from accidents in which they are involved. In order to be able to37

cover the potentially enormous costs, customers purchase insurance coverage. In exchange for38

regular premiums1, they are able to obtain coverage for damages they sustain and for damages39

they inflict on others in the event of an accident.40

In a fully automated driving environment, automakers and ISSPs not only provide driving41

technology, but are also responsible for the driving task. As such, our intuition suggests that42

they will assume responsibility for accidents that result from automated driving and therefore43

alter or possibly deal a fatal blow to the auto insurance industry2. However, despite the intu-44

1Often paid monthly or biannually
2Or, at least, the part of the industry that caters to drivers. We do not here discuss insurance for automakers.
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itiveness of such a future, its emergence is not a given for a number of reasons. First, in the1

current legal regime, such a future hinges on the willingness of automakers/ISSPs–rather than2

their being legally compelled to–to assume financial responsibility for accidents in which their3

technology is involved. While some automakers, like BMW, have decided to go that route (even4

below Level 5 (Tucker, Sean, 2022)), others such as Tesla, have been content to let current liability5

rules for drivers prevail and have, mostly, eschewed responsibility for accidents related to their6

technology3 (Communications, 2022). Second, the current legal regime might simply be inad-7

equate to deal with an environment dominated by automated driving. Indeed, in the current8

(mostly) negligence-based regime, customers must demonstrate, in court, that accidents could be9

attributed to automaker negligence. In an automated driving environment in which automakers10

are not automatically liable for accidents, collecting evidence and adjudicating such claims in11

a timely manner could demand enormous resources. Third, even when such resources are de-12

ployed, automated driving providers would only be held liable for accidents which could have13

been reasonably avoided. Thus, there might still exist a set of accidents whose economic burden14

customers must shoulder. In this context, auto insurers would still play a role. In this environ-15

ment featuring customers, automakers, ISSPs, and legacy auto insurers, we naturally wonder16

how the legal environment should evolve and the subsequent repercussions for driving safety.17

In this paper, we focus on answering the following questions relating to liability, safety, and18

insurance in an automated driving environment:19

1. How does market structure affect safety and liability in an automated driving environment20

that features automakers, ISSPs, and insurance providers?21

2. How should liability for accidents be apportioned among the different actors in this envi-22

ronment?23

3. Does legacy auto insurance still have a role to play in the age of automated driving?24

Our work is divided as follows. Section 2 presents the relevant literature and places the25

present work in its proper context. Section 3 introduces our model and its basic components,26

provides an analysis of equilibria in different settings, and discusses policy implications. Then,27

in Section 4, we relax the assumption of certainty in accident costs to understand how it affects28

the insights previously derived. Finally, Section 5 concludes the paper, and provides future29

research directions.30

2 Literature review31

The question of liability and automated driving has been explored in a number of works over32

the past decade.33

First, researchers have explored and discussed ethical problems that arise in the design of34

AVs (Nyholm and Smids, 2016; Contissa et al., 2017; Thornton et al., 2017; Himmelreich, 2018;35

Nyholm, 2018; Borenstein et al., 2019; Wu, 2020; Feess and Muehlheusser, 2022). In this strand36

of literature, researchers discuss the potential moral dilemma that arises when vehicles must be37

pre-programmed to make decisions that might endanger certain lives in order to save others38

when a fatal accident is unavoidable.39

3Sometimes rightly (Elliott and Felton, 2023).
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Second, researchers have used economic and legal concepts to study how the legal envi-1

ronment should evolve with the advent of automated driving (Lohmann, 2016; Di et al., 2020;2

Shavell, 2020; Dawid and Muehlheusser, 2022; Feess and Muehlheusser, 2022; Dawid et al., 2023).3

These works study how different liability rules and regimes might affect the safety of automated4

vehicles; how they might favor the introduction and adoption of AVs; or how policies such as5

investment in smart infrastructure can shape the resulting equilibrium in the automobile market.6

Generally, in these works, a regulator or social planner decides upon a liability regime (e.g.: strict7

liability vs negligence-based liability, etc.) to minimize the social cost of driving. This liability8

regime, in turn, affects how much an AV manufacturer invests in the safety of their vehicles.9

The framework may include other features (such as mixed traffic or smart infrastructure provi-10

sion) and their effect on the probability of accident. None of these works consider the question11

of insurance for automated driving customers and how it affects market outcomes but always12

assume that the liability regime is such that AV manufacturers bear full economic responsibility13

for accidents.14

To incorporate the notion of liability rules and adequately answer their research questions,15

contributors to the aforementioned strand of literature draw heavily on the product liability lit-16

erature (Posner, 1972; Oi, 1973; Ordover, 1979; Posner and Landes, 1980; Polinsky, 1980; Shavell,17

1980; Landes and Posner, 1985; Daughety and Reinganum, 2013). Here, the focus is on the follow-18

ing basic problem: given information (or lack thereof) on product safety and risk preferences for19

both customers and product manufacturer, how do different liability regimes affect equilibrium20

outcomes (e.g.: safety levels, product demand and price, etc.)? Closely related to that literature21

is that of insurance. Indeed, depending on the liability regime, customers (and even firms) might22

purchase insurance services in order to cover accident related liability costs. Moreover, product23

manufacturers themselves might directly provide insurance. Most importantly, by considering24

the fact that insurance contracts are means through which an agent can offload a part or a total-25

ity of its liability burden on another agent, one could readily consider the question of product26

liability to be a question of insurance contract design between two parties. These contracts have27

been studied in detail over the years. Some articles have dealt with the issue of insurance in28

competitive markets (Ehrlich and Becker, 1972; Rothschild and Stiglitz, 1976; Cook and Graham,29

1977; Schlesinger, 1983) and monopolistic markets (Stiglitz, 1977; Ligon and Thistle, 1996) under30

different information structures; others have looked at insurance under the threat of adverse se-31

lection and moral hazard and sought to evaluate their effects on insurance markets and insurance32

provision (Pauly, 1974; Dionne, 1982). Some have even tried to estimate the effect of connectivity33

on insurance cost, accounting for issues like privacy (Jin and Vasserman, 2021).34

In the present work, we propose to investigate the question of liability in the age of au-35

tomated driving by focusing on the effect of market structure on the provision of safety. By36

explicitly considering the fact that full coverage from automated driving providers is not a given,37

we derive insights as to the role that both an appropriate liability rule and auto insurance from38

legacy insurers can play in making automated driving safer and limiting economic losses from39

accidents. We draw heavily from our previous work (Vignon et al., 2022), from the insurance40

literature, and naturally, from the literature on liability in the age of automated driving. In our41

setting, an AV manufacturer and an ISSP provide automation and infrastructure services, respec-42

tively, to customers who care, among other things, about safety. AV manufacturer, ISSP, and43

legacy insurers can also provide insurance–implicitly or explicitly–to their customers. We first44

consider the case in which accident costs are known ahead of time and show that, in such a set-45

ting, legacy insurance is not relevant to customer’s liability burden. In fact, absent regulation, the46

presence of legacy insurers might lead to worse safety levels. Then, we consider the case in which47

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4701217

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Notation Description
zM Vehicle automation quality
zI Infrastructure automation quality

ϕ
j,n
1 Premium for coverage on road j demanded by agent n ∈ {M, I, L}

ϕ
j,n
2 Coverage amount for accident on road j ∈ {r, s} by agent n ∈ {M, I, L}

cn Investment cost for n ∈ {M, I}
τn Price of technology sold by agent n ∈ {M, I, L}
V Value of car ownership
λ Total demand for vehicle ownership
pj Crash probability per mile driven on road j ∈ {r, s}
p̃k Probability of state k ∈ {0, r, s}

Wk Wealth in state k ∈ {0, r, s}
U(·) Utility function
P(·, ·) Accident probability function
Cn(·) Per unit production cost of n ∈ {M, I}

(a) Frequently used variables

Notation Description
η j Share of road j ∈ {r, s}
l Total road length

W̃0 Initial wealth level
dj Accident severity on road j ∈ {r, s}
P0 Crash probability for human-driven vehicle
λ0 Market size

(b) Frequently used parameters

Table 1: Frequently used notations

accident costs are uncertain and show that, in such a context, legacy insurers may improve mar-1

ket outcomes for consumers. However, numerical examples suggest that legacy insurance could2

also be harmful in that setting.3

3 Known accident costs4

3.1 Model5

Consider a roadway used exclusively by fully AV owners. These owners purchase their vehicles6

from a vehicle manufacturer who decides the quality of the technology (e.g.: sensors, algorithms,7

other hardware and software components, etc.) with which to equip them. The manufacturer’s8

quality choices affect the crash probability of his vehicles and, therefore, his bottom line. Indeed,9

customers will shy away from an accident-prone product. We consider that all losses and acci-10

dents are the results of vehicle technology. Importantly, we do not consider owners’ efforts in11

maintaining vehicles in fully functional order. Thus, we do not account for moral hazard and/or12

adverse selection.13

A portion of the roadway is managed by an ISSP. This ISSP installs and operates AV-related14

technology on the roadway. These upgrades contribute to reducing the crash probability on the15

5
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roadway and are features that customers might use as complements or substitutes to automation1

technology.2

AV owners face three mutually exclusive states of the world while using an AV as shown in3

Figure 1. In the first state, they travel without accident on the full length of the road (Figure 1-a).4

In the second state, they are involved in an accident on the regular (r) portion of the road and5

face potential losses as a result (Figure 1-b). In the third state, they are instead involved in an6

accident on the smart (s) portion of the road–but not on the regular portion (Figure 1-c). To cover7

their potential losses, customers have the option of obtaining insurance from three parties: the8

manufacturer (M), the ISSP (I), and a legacy auto insurer (L), each of whom provides insurance9

coverage in exchange for a premium.10

(a) (b) (c)

Figure 1: Schematic of state (a) no accident, (b) accident on regular portion, and (c) accident on smart portion of the road.

Formally, then, user preferences can be described by the following equations:11

V = p̃0 · U(W0) + p̃r · U(Wr) + p̃s · U(Ws)12

Wk =


W̃0 − ∑n∈{M,I,L}(τ

n + ∑j∈{r,s} ϕ
j,n
1 ) if k = 0

W̃0 − ∑n∈{M,I,L}(τ
n + ∑j∈{r,s} ϕ

j,n
1 )− dk + ∑n∈{M,I,L} ϕk,n

2 if k = r
W̃0 − ∑n∈{M,I,L}(τ

n + ∑j∈{r,s} ϕ
j,n
1 )− dk + ∑n∈{M,I,L} ϕk,n

2 if k = s

13

p̃k =


(1 − pr)ηr ·l · (1 − ps)ηs·l if k = 0
1 − (1 − pr)ηr ·l if k = r
(1 − pr)ηr ·l · [1 − (1 − ps)ηs·l ] if k = s

14

In the above, V represents the expected utility from car ownership; p̃k represents the probability15

of occurrence of state k ∈ {0, r, s}4; pj represents the probability of a crash per mile driven16

on portion j ∈ {r, s} of the roadway; W̃0 is consumers’ wealth; dj represents cost of damages17

incurred as a result of the accident on portion j of the roadway; τn represents the technology-18

related cost paid to agent n ∈ {M, I, L}; ϕ
j,n
1 represents the premium that consumers pay to agent19

n for coverage on portion j of the roadway; ϕ
j,n
2 represents insurance payout from agent n to20

the victim as a result of an accident on portion j of the roadway; l is the length of the roadway;21

η j represents the fraction of the roadway of type j; and U(·) describes utility as a function of22

wealth. Naturally, τL = 0 since insurers do not provide any driving related technology; and23

ϕr,I
1 = ϕr,I

2 = 0 since ISSPs do not operate on the regular portion of the roadway. Figure 2 shows24

a schematic of these interactions.25

Moreover, because dj is constant and known in advance by all parties, all risks is contractible.26

4The form of p̃k implies a sequence in the occurrence of accidents: travellers first travel on the regular portion of
the road and, if uninjured, travel on the smart portion of the road. Other configurations are possible, though this one
is most straightforward.

6
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Figure 2: Schematic of interactions between consumers and manufacturer, ISSP, and insurer.

However, the insights we derive here carry over to situations in which accidents types and dam-1

ages are heterogeneous, provided a contract can be drawn up for every possible occurrence.2

We assume that customers are heterogeneous in their reservation values (but not in risk3

profile) for AV ownership which is distributed in the population according to a CDF Λ(·). This4

assumption gives rise to a demand function for AVs, λ = λ0 · Λ(V), where λ0 is the market size.5

We make the following assumptions on U(·):6

Assumption 1. We assume the following:7

A1.1 Utility is strictly increasing in wealth: U′ > 0.8

A1.2 Customers experience decreasing absolute risk aversion (DARA): U′′ < 0 and U′′′ > 0.9

The crash probabilities are influenced by the decisions of the manufacturer and the ISSP as10

follows:11

pr = P0 · P(zM, 0)12

ps = P0 · P(zM, zI)13

where zM is the quality level of AV technology; zI is the quality level on the smart portion of the14

roadway; P0 is the crash probability when driving without automation and digitalization; and15

P(·, ·) is a probability function.16

Assumption 2. We assume the following:17

A2.1 The crash probability is strictly decreasing in technology quality: P1, P2 < 0.18

7
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A2.2 P(0, 0) = 1.1

The manufacturer and the ISSP face cost cM per vehicle and cI per mile of roadway equipped,2

respectively. These costs depend on technology levels as follows:3

cM = CM(zM)4

cI = CI(zI)5

Assumption 3. We assume the following:6

A3.1 The cost functions are strictly increasing in technology quality: CM′
, CI′ > 0.7

A3.2 The cost functions are strictly convex in technology quality: CM′′
, CI′′ > 0.8

We can then describe our problem using the system of equations below:9

λ = λ0 · Λ(V) (1a)10

V = p̃0 · U(W0) + p̃r · U(Wr) + p̃s · U(Ws) (1b)11

Wk =


W̃0 − ∑n∈{M,I,L}(τ

n + ∑j∈{r,s} ϕ
j,n
1 ) if k = 0

W̃0 − ∑n∈{M,I,L}(τ
n + ∑j∈{r,s} ϕ

j,n
1 )− dk + ∑n∈{M,I,L} ϕk,n

2 if k = r
W̃0 − ∑n∈{M,I,L}(τ

n + ∑j∈{r,s} ϕ
j,n
1 )− dk + ∑n∈{M,I,L} ϕk,n

2 if k = s

(1c)12

p̃k =


(1 − pr)ηr ·l · (1 − ps)ηs·l if k = 0
1 − (1 − pr)ηr ·l if k = r
(1 − pr)ηr ·l · [1 − (1 − ps)ηs·l ] if k = s

(1d)13

pr = P0 · P(zM, 0) (1e)14

ps = P0 · P(zM, zI) (1f)15

cM = CM(zM) (1g)16

cI = CI(zI) (1h)17

We now consider three different scenarios to understand:18

1. the socially optimal apportionment of liability among the four agents in our model;19

2. the effect of market structure on liability apportionment;20

3. and whether the presence of the auto insurance industry improves outcomes.21

3.2 First-best22

We consider the social welfare maximization problem:

max
τn, zM , zI

ϕ
j,n
1 , ϕ

j,n
2

λ0 ·
∫ V

0
Λ(x) · dx +

[(
τM + ∑

j∈{r,s}
(ϕ

j,M
1 − p̃j · ϕ

j,M
2 )− cM

)
· λ

]
+

[(
τ I + ϕs,I

1 − p̃s · ϕs,I
2

)
· λ − cI · ηs · l

]
+

[(
∑

j∈{r,s}
ϕ

j,L
1 − p̃j · ϕ

j,L
2

)
· λ

]
s.t. Equations (1a) to (1h)

(SO)

8
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In this problem, given the fraction of the roadway allocated to smart infrastructure, a social1

planner essentially minimizes the social cost of driving, taking into account the availability of in-2

surance (either through automakers and ISSPs or through legacy insurers). We implicitly assume3

that insurers, automakers, and ISSPs are risk neutral so that the expected payouts from accidents4

enter the objective function linearly.5

The first-order necessary conditions (FONCs) for optimality yield (more details on the deriva-6

tion are given in Appendix A):7

ϕ̂j = dj ∀j ∈ {r, s} (2a)8

τ̂ = cM + ∑
j∈{r,s}

p̃j · ϕ̂j +
Λ
Λ′ ·

[ 1
U′(W0)

− 1
]

(2b)9

−CM′
(zM)

P0 · l
= (dr − ds) · P1(zM, 0) · (1 − p̃r) · ηr

1 − pr + p̃0 · ds ·
[P1(zM, zI) · ηs

1 − ps +
P1(zM, 0) · ηr

1 − pr

]
(2c)

10

−CI′(zI)

P0 · λ
= p̃0 · ds · P2(zM, zI)

1 − ps (2d)11

where:12

• τ̂ = ∑n∈{M,I,L}(τ
n + ∑j∈{r,s} ϕ

j,n
1 ) is the cost of vehicle ownership, including both purchase,13

road usage, and insurance premium costs;14

• ϕ̂j = ∑n∈{M,I,L} ϕ
j,n
2 is the total coverage that a vehicle owner receives in case of an accident15

on portion j of the roadway.16

Firstly, we note that longer travel and higher demand will lead to increased investment in17

automation and digitalization technology, respectively (Equations (2c) and (2d)). Indeed, more18

travel increases the individual risk of accident and thus, in response, the planner invests more in19

vehicle technology. Additionally, increased travel volume increases the expected losses from an20

accident, thus inducing the planner to invest more in infrastructure technology. When it comes to21

the relationship between vehicle and infrastructure technology, we note that when an increase in22

infrastructure technology reinforces (weakens) the safety effect of automation, P12 < 0 (P21 > 0),23

then higher equilibrium digitalization implies higher (lower) spending cM on vehicle technology.24

Thus, substitutability and complementarity matter in the optimal provision of digitalization and25

automation. Those insights are in keeping with the results from Vignon et al. (2022).26

Second, from a societal perspective, full coverage regardless of accident type is optimal27

(Equation (2a)). Both on the smart and regular portions of the roadway, combined insurance28

payouts are sufficient to cover all damages to customers in the event of a crash. Equation (2b)29

indicates that the cost of vehicle ownership is adjusted to reflect producers’ liability exposure30

and now includes the expected producer losses from vehicle operation. Thus, even when au-31

tomakers decide to shoulder losses resulting from an AV accident, vehicle ownership cost might32

not decrease, except if both crash probability and/or crash severity significantly decrease. More-33

over, while optimal digitalization provision solely depends on accident severity on the smart34

road (Equation (2d)), so that an increase in ds increases the optimal zI , optimal automation pro-35

vision depends on severity on both road segments (Equation (2c)). Indeed, the marginal cost of36

automation technology is equalized with the sum of three terms:37

9
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• dr · P1(zM ,0)·(1− p̃r)·ηr

1−pr which captures the marginal reduction in expected payouts from acci-1

dents on the regular portion of the road due to a marginal increase in automation technol-2

ogy;3

• p̃0 · ds ·
[

P1(zM ,zI)·ηs

1−ps + P1(zM ,0)·ηr

1−pr

]
which captures the marginal reduction in expected payouts4

from accidents on the smart portion of the road due to a marginal increase in automation5

technology;6

• and −ds · P1(zM ,0)·(1− p̃r)·ηr

1−pr which captures the fact that an increase in automation technology,7

by decreasing the probability of accidents on the regular portion of the road, increases the8

odds of incurring an accident on the smart portion of the road, thus raising the expected9

cost of accidents on the smart portion.10

While the first two terms described above capture the direct effects of automation technology11

on liability exposure, the third term captures a second-order effect. This second-order effect is12

likely negligible at the first-best, so that an increase in either dr or ds would result in an increase13

in the optimal automation level.14

Thirdly, from a social perspective, when all providers are risk-neutral, the sharing of liability15

between automakers, ISSPs, and insurers is irrelevant, so long as full coverage obtains. It is the16

total coverage available to customers which determines optimal safety levels at the first-best, not17

a particular allocation of liability among the parties. However, as we will later see in Section 3.3,18

the manner in which liability is apportioned will matter for safety in practice.19

Lastly, at optimality, joint producer profit, π∗, is given by:

π∗ =
Λ
Λ′ ·

[ 1
U′(W0)

− 1
]
· λ − cI · ηs · l =

Λ
Λ′ ·

([
− A(W0)

U′′(W0)

]
− 1

)
· λ − cI · ηs · l (3)

where A(·) > 0 is the absolute risk aversion function. From the above, it is clear that a key driver20

of profitability for producers is customers’ risk aversion. When risk aversion is low, π∗ < 021

and either the provision of infrastructure services requires subsidies or a regulated monopoly.22

However, when risk aversion is sufficiently high, the provision of automation and infrastructure23

services can be profitable. In essence, it is users’ risk aversion towards accidents that helps24

bankroll the planner in the provision of smart infrastructure: users are willing to pay more to25

reduce the risk involved in driving. Thus, in addition to the optimal provision of capacity and26

optimal tolling on congested roads (Verhoef and Rouwendal, 2004), optimal insurance in the27

presence of strong risk aversion can also lead to self-financing for smart road infrastructure.28

3.3 Unregulated environment29

Here, we would like to understand how the provision of safety and insurance in the absence30

of regulations differs from the socially optimal allocation. However, we must account for the31

fact that this unregulated equilibrium will differ from the first-best due to different forces. First,32

producers could wield market power on their respective offerings (automation for automakers,33

digitalization for ISSPs, insurance for legacy insurers), thus distorting both safety and premiums34

from their optimal levels. Moreover, in the case in which they operate independently, lack of35

coordination could itself distort offerings, as demonstrated in Vignon et al. (2022). As a result, we36

must isolate each of these channels and understand their contributions to sub-optimality. Thus,37

10
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to investigate the effect of market power, we begin by first analyzing an unregulated, integrated1

monopoly which provides automation, digitalization, and insurance. Then, to understand the2

effects of non-cooperation, we investigate the Nash game between automaker, ISSP, and insurers.3

We note that each of these configurations, in and of itself, could emerge in practice. Indeed,4

an integrated consortium formed of automakers, ISSPs, insurers, and government agencies and5

that manages both vehicle and infrastructure standards could easily emerge, judging from a6

few existing examples (e.g.: Grinell (2020)). However, forming such a consortium at a large-scale7

might not be readily possible, given the disparity in regulation and willingness to entertain smart8

mobility that prevails across states, whence the value of studying an uncooperative setting.9

3.3.1 Integrated monopoly10

We now consider what happens when a single entity manages the automaker, the ISSP, and
insurance provision. This monopolist maximizes profits according to the following:

max
τ̂, zM, zI , ϕ̂j

(τ̂ − cM − ∑
j∈{r,s}

p̃j · ϕ̂j) · λ − cI · ηs · l

s.t. Equations (1a) to (1h)
(MO)

where τ̂ and ϕ̂j are defined as in Equation (2). Assuming an interior solution exists, the FONC11

for (MO) yields:12

ϕ̂j = dj ∀j ∈ {r, s} (4a)13

τ̂ = cM + ∑
j∈{r,s}

p̃j · ϕ̂j +
Λ
Λ′ ·

[
− A(W0)

U′′(W0)

]
(4b)14

−CM′
(zM)

P0 · l
= (dr − ds) · P1(zM, 0) · (1 − p̃r) · ηr

1 − pr + p̃0 · ds ·
[P1(zM, zI) · ηs

1 − ps +
P1(zM, 0) · ηr

1 − pr

]
(4c)

15

−CI′(zI)

P0 · λ
= p̃0 · ds · P2(zM, zI)

1 − ps (4d)16

Here, the monopolist covers all potential damages, just as in the first-best (Equation (4a)). How-17

ever, due to market power, this naturally occurs at a higher vehicle ownership cost than that18

chosen by the planner (Equation (4b)). This leads to lower demand and suboptimal safety levels19

(Equations (4c) and (4d)). Moreover, it is clear that full coverage could obtain even in the absence20

of legacy auto insurers.21

3.3.2 Generalized Nash Equilibrium22

What happens, however, when we allow for independent operation for all three entities? To23

answer this question, we consider the Nash game between all three entities. Letting an =24

{τn, ϕr,n, ϕs,n, zn} denote the action vector of player k ∈ {M, I, L}5, {aM,∗, aI,∗, aL,∗} constitutes25

a Generalized Nash Equilibrium (GNE) if aM,∗ solves the following problem, taking aI,∗ and aL,∗
26

as given:27

5Recall that τL = 0, zL = 0, and ϕr,I
1 = ϕr,I

2 = 0

11
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max
τ̂M, zM, ϕ

j,M
2

(τ̂M − cM − ∑
j∈{r,s}

p̃j · ϕ
j,M
2 ) · λ

s.t. Equations (1a) to (1h)

(N-M)

aI,∗ solves the following problem, taking aM,∗ and aU,∗ as given:

max
τ̂ I , zI , ϕ

j,I
2

(τ̂ I − p̃s · ϕs,I
2 ) · λ − cI · ηs · l

s.t. Equations (1a) to (1h)
(N-I)

and aL,∗ solves the following problem, taking aM,∗ and aI,∗ as given:

max
τ̂L, ϕ

j,L
2

(
τ̂L − ∑

j∈{r,s}
p̃j · ϕ

j,L
2

)
· λ

s.t. Equations (1a) to (1h)

(N-L)

where τ̂n = τn + ∑j∈{r,s} ϕ
j,n
1 for n ∈ {M, I, L}.1

Using the FONCs of (N-M), (N-I), and (N-L), we derive the following equations characteriz-2

ing the equilibrium:3

ϕ̂j = dj ∀j ∈ {r, s} (5a)4

τ̂M = cM + ∑
j∈{r,s}

p̃j · ϕ
j,M
2 +

Λ
Λ′ ·

[
− A(W0)

U′′(W0)

]
(5b)5

τ̂ I = ϕs,I
2 · p̃s +

Λ
Λ′ ·

[
− A(W0)

U′′(W0)

]
(5c)6

τ̂L = ∑
j∈{r,s}

p̃j · ϕ
j,L
2 +

Λ
Λ′ ·

[
− A(W0)

U′′(W0)

]
(5d)7

−CM′
(zM)

P0 · l
= (ϕr,M

2 − ϕs,M
2 ) · P1(zM, 0) · (1 − p̃r) · ηr

1 − pr + p̃0 · ϕs,M
2 ·

[P1(zM, zI) · ηs

1 − ps +
P1(zM, 0) · ηr

1 − pr

]
(5e)

8

−CI′(zI)

P0 · λ
= p̃0 · ϕs,L

2 · P2(zM, zI)

1 − ps (5f)9

Here too, full coverage is provided to AV owners on both portions of the road (Equation (5a)).10

However, this occurs at a higher total cost than under the first-best and the integrated monopoly11

because of triple marginalization (Equations (5b) to (5d)). Moreover, which entity provides that12

coverage is unclear. As such, multiple equilibria might exist, ranging from one or two of the13

entities providing little coverage to all entities sharing the liability equally. Some of these equi-14

libria would be problematic from a safety viewpoint. Indeed, consider the following rewriting of15

Equations (5e) and (5f):16

−CM′
(zM) = (dr − ϕr,L

2 ) · ∂ p̃r

∂zM (zM, 0) + [ds − (ϕs,L
2 + ϕs,I

2 )] · ∂ p̃s

∂zM (zM, zI)17

12
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−CI′(zI)

P0 · λ
= p̃0 · ϕs,L

2 · P2(zM, zI)

1 − ps1

We have effectively eliminated ϕ
j,M
2 from Equations (5e) and (5f) using the fact that full coverage2

obtains. It is straightforward to see that allocations in which ϕ
j,L
2 > 0 or ϕs,I

2 > 0 would automati-3

cally result in lower automation levels than the first-best. This is because, for the automaker, any4

assumption of liability from either the insurer or the automaker reduces the incentive for safety5

investment in automation. This mainly occurs because of lack of coordination between all three6

insurance providers. Thus, even though full coverage obtains, the total expected cost of accidents7

would simply be higher than socially optimal.8

In addition to this first-order distortion effect, another distortion effect that might arise is9

related to complementarity between automation and digitalization. If infrastructure technology10

acts as a substitute for vehicle technology, then an equilibrium with low ϕs,M would result in11

lower (higher) equilibrium automation (digitalization) technology than an equilibrium with high12

ϕs,M. In the case of complementarity between the two technologies, lower ϕs,M could induce both13

lower automation and digitalization at equilibrium. In the absence of any guiding principle,14

either of these equilibria might prevail.15

Thus, the planner might need to establish a regulation, in the manner of Di et al. (2020), to16

ensure that no undesirable equilibrium is reached (e.g.: one of the agents free-riding from the17

others’ quality investment or on insurers’ risk assumption). We discuss the design of these rules18

in the following section.19

3.4 Liability rule implementation20

Here, we investigate whether a liability rule can prevent the Nash game from settling at an21

undesirable equilibrium. First, we note that an appropriate liability rule in this context will be22

negligence-based (Talley, 2019; Di et al., 2020), thus making the liability share of the automaker23

and the ISSP dependent on their respective level of safety investment. However, when negligence-24

based liability is considered, how much insurers should shoulder becomes unclear since they do25

not make any safety decisions. A straightforward assumption, then, and one that has often26

been used in the literature, is that automakers (and ISSPs, when present) jointly shoulder all the27

liability.28

In this section, we first consider this special case before investigating a regime in which the29

total burden that falls on automaker and ISSPs is determined by their joint investment levels and30

insurers step in to cover the rest.31

3.4.1 Legacy insurers do not provide any coverage32

We introduce α = A(zM, zI), the share function for the manufacturer. α determines the fraction of33

total damages that the manufacturer must shoulder when an accident occurs on the smart portion34

of the road. Letting zM,∗∗ and zI,∗∗ denote first-best technology levels, {aM,∗, aI,∗} constitutes a35

Generalized Nash Equilibrium (GNE) if aM,∗ solves the following problem, taking aI,∗ as given:36

13
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max
τ̂M, zM, ϕ

j,M
2

(τ̂M − cM − ∑
j∈{r,s}

p̃j · ϕ
j,M
2 ) · λ

s.t. Equations (1a) to (1h),

ϕs,M
2 · λ ≥ A

(
zM,∗∗ − zM, zI,∗∗ − zI

)
· ds · λ

(N-MR)

and aI,∗ solves the following problem, taking aM,∗ as given:

max
τ̂ I , zI , ϕs,I

2

(τ̂ I − p̃s · ϕs,I) · λ − cI · ηs · l

s.t. Equations (1a) to (1h),

ϕs,I
2 · λ ≥

[
1 −A

(
zM,∗∗ − zM, zI,∗∗ − zI

)]
· ds · λ

(N-IR)

(In the above, pre-multiplying by λ simplifies a lot of the subsequent calculus).1

Assumption 4. We make the following assumptions on A(·, ·):2

A4.1 The share function is differentiable.3

A4.2 The share function is strictly decreasing in the automaker’s choice of automation: A1 > 06.4

A4.3 The share function is strictly increasing in the ISSP’s choice of digitalization: A2 < 0.5

A4.4 The share function is strictly positive and below 1: 0 < A(·, ·) < 1.6

It is important to note that the shape and functional form of A(·, ·) will differ depending7

on the equilibrium targeted by the planner. In some instances, for example, the desired target8

might yield A(0, 0) = 1
2 , so that equal sharing in liability is the effective desired target. In other9

instances, however, this might change. Regardless, by our assumptions, both agents will always10

hold some liability, however infinitesimal.11

By deriving the FONC for N-MR and N-IR, we can first show that the regime with a liability12

rule results in greater safety levels than the one without. Additionally, by assuming Equation (2c)13

and Equation (2d) hold, we can derive sufficient conditions for a share function to replicate the14

desired quality levels 7. Indeed, let µk ≥ 0 denote the Lagrangian multiplier associated with the15

share constraint for player k. Then, sufficient conditions for the GNE to yield {zM,∗∗, zI,∗∗} are16

that there exists µM > 0 and µI > 0 satisfying the following two equations:17

[1 −A(0, 0)] · dp̃s

dzM (zM,∗∗, zI,∗∗) + µM · A1(0, 0) = 018 (
[1 −A(0, 0)] · λ∗ − λ∗∗

)
· dp̃s

dzI (z
M,∗∗, zI,∗∗) + µI · A2(0, 0) · λ∗ = 019

where20

1
P0 · l

· dp̃s

dzM (zM,∗∗, zI,∗∗) = −P1(zM,∗∗, 0) · (1 − p̃r) · ηr

1 − pr + p̃0 ·
[P1(zM,∗∗, zI,∗∗) · ηs

1 − ps +
P1(zM,∗∗, 0) · ηr

1 − pr

]
21

6Note that A(·, ·) increases with −zM and −zI

7The derivation is more clearly spelled out in Appendix A

14
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1
P0 · ηs · l

· dp̃s

dzI (z
M,∗∗, zI,∗∗) = p̃0 · P2(zM,∗∗, zI,∗∗)

1 − ps1

λ∗∗ > λ∗
2

and λ∗ is demand under Nash. By Assumptions A4.2, A4.3 and A4.4, and assuming that the3

first-order effects of automation technology dominate the second-order effects, the sufficiency4

condition is always met. Thus, an appropriate liability rule can reproduce the first-best automa-5

tion and digitalization levels (though at a higher price than the first-best). In practice, however,6

implementing such a rule would be costly. Indeed, it would involve expanding resources to7

determine the quality levels of technology used by both entities, a posteriori. In the presence of8

certain standards, this cost could be reduced and quality could be ensured ex ante.9

3.4.2 Legacy insurers provide coverage10

Here, we now introduce βj = B j(zM, zI), the total share function for accidents on the j-th portion11

of the road. It is the fraction of total damages on said portion that automakers and ISSP must12

jointly cover.13

Now, {aM,∗, aI,∗, aL,∗} constitutes a Generalized Nash Equilibrium (GNE) if aM,∗ solves the14

following problem, taking {aI,∗, aL,∗} as given:15

max
τ̂M, zM, ϕ

j,M
2

(τ̂M − cM − ∑
j∈{r,s}

p̃j · ϕ
j,M
2 ) · λ

s.t. Equations (1a) to (1h),

ϕj,M · λ ≥ A
(

zM,∗∗ − zM, zI,∗∗ − zI
)
· B j
(

zM,∗∗ − zM, zI,∗∗ − zI
)
· dj · λ ∀j ∈ {r, s}

(N-MR2)

, aI,∗ solves the following problem, taking {aM,∗, aL,∗} as given:

max
τ̂ I , zI , ϕs,I

2

(τ̂ I − p̃s · ϕs,I
2 ) · λ − cI · ηs · l

s.t. Equations (1a) to (1h),

ϕs,I
2 · λ ≥

[
1 −A

(
zM,∗∗ − zM, zI,∗∗ − zI

)]
· Bs

(
zM,∗∗ − zM, zI,∗∗ − zI

)
· ds · λ

(N-IR2)

and aL,∗ solves the following problem, taking {aM,∗, aI,∗} as given:

max
τ̂L, ϕ

j,L
2

(
τ̂L − ∑

j∈{r,s}
p̃j · ϕ

j,L
2

)
· λ

s.t. Equations (1a) to (1h),

ϕ
j,L
2 · λ ≥

[
1 −B j

(
zM,∗∗ − zM, zI,∗∗ − zI

)]
· dj · λ ∀j ∈ {r, s}

(N-LR2)

Assumption 5. We assume the following on B j(·, ·):16

A5.1 The total share function is differentiable.17

15
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A5.2 The total share function is strictly decreasing in the automaker’s and ISSP’s choices of automation:1

B j
1 > 0, B j

2 > 0.2

A5.3 The total share function exhibits complementarity between automation and digitalization: B j
21 > 0,3

B j
12 > 0.4

A5.4 If zn,∗∗ ≤ zn ∀n ∈ {M, I}, then B j(·, ·) < 1.5

Assumptions A5.2, A5.3 and A5.4 imply that, by proper coordination to increase safety, au-6

tomaker and ISSP can reduce their total cost. Then, regular insurers pick up the slack, providing7

coverage for (1 − βj) · dj in damages.8

Here again, the equilibrium results in greater safety levels than the unregulated Nash game.9

Additionally, it is possible to derive sufficient conditions for the rule to result in the desired safety10

levels. Namely, there exist µj,M > 0 and µI > 0 satisfying the following equations:11

∑
j
[1 −Aj(0, 0) · B j(0, 0)] · dp̃j

dzM (zM,∗∗, zI,∗∗) + µj,M · γj,M(0, 0) = 012

(
[1 −A(0, 0) · Bs(0, 0)] · λ∗ − λ∗∗

)
· dp̃s

dzI (z
M,∗∗, zI,∗∗) + µI · γI(0, 0) = 013

where:14

γj,M(·, ·) = Aj
1(·, ·) · B

j(·, ·) +Aj(·, ·) · B j
2(·, ·)15

γI(·, ·) = A2(·, ·) · Bs(·, ·) +A(·, ·) · Bs
2(·, ·)16

Ar(·, ·) = 117

As(·, ·) = A(·, ·)18

This is always true provided we add, to Assumptions A5.2, A5.3 and A5.4, an additional19

assumption: A2(0, 0) · Bs(0, 0) +A(0, 0) · Bs
2(0, 0) < 0. That is, the effective share of damages20

borne by the automaker must be decreasing in the level of digitalization zI .21

3.5 Numerical example22

This section provides more insights from numerical experiments. We first show scenarios in23

which there is an undesirable equilibrium that emerges in the absence of collaboration between24

the manufacturer, ISSP, and insurer. Then, we demonstrate how implementing regulations could25

achieve a desirable equilibrium. In this section, we assume that the AV demand function is:26

λ =
λ0

1 + 100 exp(−0.001V)

, the utility function is:27

U(Wk) = 5000

(
1 − 1

exp( Wk

1000 )

)

16
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Notation Interpretation Value
dr Cost of damages due to the accident on regular portion of the roadway ($) 8000
ds Cost of damages due to the accident on smart portion of the roadway ($) 5000
l Roadway length / Mileage per trip (mi) 40

ηs Smart portion of the roadway 0.2
λ0 Base travel demand 5000
P0 Base crash probability (/mi) 10−3

W0 Initial budget ($) 10000

Table 2: Parameter values for numerical examples

and the probability function is:

P(zM, zI) = exp(−0.25zM − 0.1zI)

and cost functions of manufacturer and ISSP are cM = 5(zM)2 and cI = 20(zI)2. Table 2 further1

presents the default value of the parameters used in this section.2

Table 3 presents the optimal values of decision variables for the first-best and monopoly3

scenarios. As outlined in Sections 3.2 to 3.4, the monopoly scenario induces a slightly higher4

vehicle ownership cost due to market power, which results in lower demand in comparison to5

the first-best. This circumstance leads to suboptimal infrastructure automation quality. However,6

in both scenarios, there is full coverage of all damages in both regular and smart portions of the7

roadway.8

Then, we consider a scenario in which three entities operate independently and their de-9

cisions result in a generalized Nash equilibrium. As discussed earlier, the equilibrium is not10

unique and there might exist multiple equilibria. Table 4 presents examples of such equilibria.11

In these cases, again there is full accident coverage on both regular and smart portions of the12

roadway. However, the proportion of coverage from each entity is different. For instance, in the13

equilibrium presented in the second row, all entities contribute to the coverage in case of a crash.14

However,the manufacturer does not provide any coverage in the equilibrium presented in the15

last row. We can also observe suboptimal safety levels as presented in the equilibria in the first,16

fifth, and sixth rows while the total vehicle ownership cost is higher compared to other equilibria17

($7996 vs. $7185). Such occurrences show the importance of liability rules in preventing such18

undesirable equilibria.19

Assuming that the insurers do not provide any coverage and taking the share function for
the manufacturer as

α = A
(

zM,∗∗ − zM, zI,∗∗ − zI
)
=

2
2 + exp(zM,∗∗ − zM) + exp(−zI,∗∗ + zI)

,

would lead to optimal safety levels and equal liability sharing in the smart portion of the roadway

τ̂ zM zI ϕ̂r ϕ̂s λ V
FB 6970.3 3.11 7.31 8000.0 5000.0 2691 4758.4

MO 7185 3.11 7.20 8000.0 5000.0 2619 4700.5

Table 3: Optimal value of decision variables for the first-best and monopoly scenarios.

17
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τ̂M zM ϕr,M
2 ϕs,M

2 τ̂ I zI ϕs,I
2 τ̂L ϕr,L

2 ϕs,L
2 λ V

1 2772.0 2.99 8000.0 0 2607.0 6.53 0 2616.7 0 5000.0 2154 4326.2
2 2361.5 3.11 4001.9 1666.3 2410.9 7.20 1663.9 2412.6 3998.1 1669.8 2619 4700.5
3 2403.0 3.11 8000.0 213.9 2397.1 7.20 2365.2 2384.9 0 2420.8 2619 4700.5
4 1946.1 3.11 0 0 2645.1 7.20 3285.2 2593.8 8000.0 1714.8 2619 4700.5
5 2723.1 2.28 5098.6 255.5 2614.6 6.40 4070.1 2658.7 2901.4 674.3 2153 4325.8
6 2780.8 3.14 8000.0 3395.7 2607.7 1.64 802.2 2607.7 0 802.2 2153 4325.8

Table 4: Optimal value of decision variables for different generalized Nash equilibria.

between the manufacturer and ISSP as presented in the first row of Table 5. As can be seen, the
liability rule results in the first-best automation and digitalization level, however, the total vehicle
ownership cost is $ 7185, which is higher than the first-best cost of $ 6970.3. Now, we consider
the case in which insurers provide coverage and assume that the manufacturer and ISSP’s joint
share function is:

βj = B j
(

zM,∗∗ − zM, zI,∗∗ − zI
)
=

1
1 + exp(zM,∗∗ − zM)

· 1
1 + exp(zI,∗∗ − zI)

,

The resulting equilibrium is presented on the second row of Table 5. Again, the safety levels are1

equal to the first-best levels and higher than unregulated Nash. Moreover, all entities contribute2

to coverage in case of a crash due to the existence of the liability rules.3

4 Uncertainty in accident costs4

So far, we have provided answers to our first two guiding questions. To our first question5

regarding the effect of market structure on vehicle and infrastructure safety, we have shown that6

a setting in which automakers, ISSPs, and legacy insurers operate independently automatically7

leads to sub-optimal safety levels. Such an issue does not arise when a single entity produces8

vehicles, equips infrastructure, and provides insurance to consumers. Then, with respect to our9

second question, we have shown that, in the setting in which entities do not cooperate, it is10

possible to implement a liability rule that, under appropriate conditions, is sufficient to achieve11

first-best safety levels.12

We have also shown that such a rule can be implemented whether or not legacy insurers13

remain in the market. This seems to imply that, under our assumptions, legacy auto insurers14

need not subsist in the age of automated driving. Since the market can be brought close to15

the social optimum with or without legacy insurers, it seems that they bring no advantage to16

consumers and have no means to differentiate themselves, at least in our setting. As such, they17

simply might cease to exist when automated driving becomes widespread.18

τ̂M zM ϕr,M
2 ϕs,M

2 τ̂ I zI ϕs,I
2 τ̂L ϕr,L

2 ϕs,L
2 λ V

3837.6 3.11 8000.0 2500.0 3347.4 7.31 2500.0 - - - 2619 4700.5
3303.0 3.11 1999.9 625.0 1023.2 7.31 625.0 2858.8 6000.1 3750.0 2619 4700.5

Table 5: Optimal value of decision variables in the presence of liability rules.
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Now, however, we ask whether the presence of legacy auto insurers can improve outcomes1

(in terms of consumer welfare) in markets in which the severity of accidents, dj, is not known2

ahead of time but is rather a random variable known with precision only after an accident has3

occurred. In this context, then, automakers and ISSPs might issue contracts with upper bounds4

on the amount recoverable for customers. Such a setting might also leave the door open for5

legacy insurers.6

4.1 Model7

Now, we consider a setting in which, even though only one type of accident may occur on any8

given portion of the roadway8, there is uncertainty about the actual damages resulting from the9

accident. If we assume that automakers, ISSPs, insurers, and customers are willing and able to10

draw up a contract for every possible value of these damages, then the problem can most readily11

be recast as the one described in Appendix B. However, when this is not necessarily possible, as12

is the case in reality, automakers, ISSPs, and insurers might simply specify a maximum coverage13

that they are willing to provide. In this context, then, might the presence of legacy insurers14

improve outcomes?15

For simplicity of exposition, we focus solely on the regular portion of the road. Similar16

mechanisms to those illustrated here will be at play on the smart portion of the road. Then the17

equations describing our problem are as follows:18

λ = λ0 · Λ(V) (11a)19

V = p̃0 · U(W0) + p̃r ·
[

G
(

ϕr,M
2 + ϕr,L

2

)
· U(W0) +

∫ ∞

ϕr,M
2 +ϕr,L

2

g(dr) · U
(

W0 + ∑
n∈{M,L}

ϕr,n
2 − dr

)
· ddr

]
= p̃0 · U(W0) + p̃r · G

(
ϕr,M

2 + ϕr,L
2

)
· U(W0)+

p̃r ·
[

E
[
U
(

W0 + ∑
n∈{M,L}

ϕr,n
2 − dr

)∣∣∣dr > ϕr,M
2 + ϕr,L

2

]
·
(

1 − G
(

ϕr,M
2 + ϕr,L

2

))]
(11b)

20

W0 = W̃0 − ∑
n∈{M,L}

τ̂n (11c)21

In the above, dr, the cost of accidents on the regular portion of the road, is distributed according to22

a CDF G with corresponding PDF g. Essentially, the automaker provides coverage for accidents23

up to ϕr,M
2 . Then, the insurer steps in and provides additional coverage ϕr,L

2 . For accidents whose24

costs exceeds ϕr,L
2 + ϕr,M

2 , customers must cover the remaining costs. The profits for manufacturer25

and insurers can be written as:26

πM =

[
τ̂M − cM − p̃r ·

( ∫ ϕr,M
2

0
dr · g(dr) · ddr + ϕr,M

2 · [1 − G(ϕr,M
2 )]

)]
· λ

=

[
τ̂M − cM − p̃r ·

(
E
[
dr
∣∣∣dr ≤ ϕr,M

2

]
· G(ϕr,M

2 ) + ϕr,M
2 · [1 − G(ϕr,M

2 )]
)]

· λ

27

8As in our original setting.
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πL =

[
τ̂L − p̃r ·

( ∫ ∑n∈{M,L} ϕr,n
2

ϕr,M
2

dr · g(dr) · ddr + ϕr,L
2 ·

[
1 − G( ∑

n∈{M,L}
ϕr,n

2 )
])]

· λ

=

[
τ̂L − p̃r · E

[
dr
∣∣∣ϕr,M

2 < dr ≤ ∑
n∈{M,L}

ϕr,n
2

]
·
(

G( ∑
n∈{M,L}

ϕr,n
2 )− G(ϕr,M

2 )
)]

· λ+

p̃r · ϕr,L
2 · [1 − G( ∑

n∈{M,L}
ϕr,n

2 )] · λ

1

4.2 Nash game2

Solving for the equilibrium of the Nash game, we obtain the following:3

U′(W0) =
1 − G(ϕr,L

2 + ϕr,M
2 )

1 − G(ϕr,M
2 )

· E
[
U′(W0 + ∑

n∈{M,L}
ϕr,n

2 − dr)|dr > ∑
n∈{M,L}

ϕr,n
2

]
(13a)4

τ̂M = cM + p̃r ·
(

E[dr|dr ≤ ϕr,M
2 ] · G(ϕr,M

2 ) + ϕr,M
2 · [1 − G(ϕr,M

2 )]
)
+

Λ
Λ′ ·

1
U′(W0)

(13b)

5

τ̂L = p̃r ·
(

E
[
dr
∣∣∣ϕr,M

2 < dr ≤ ∑
n∈{M,L}

ϕr,n
2

]
· (G( ∑

n∈{M,L}
ϕr,n

2 )− G(ϕr,M
2 ))

+ ϕr,L
2 · [1 − G( ∑

n∈{M,L}
ϕr,n

2 )]
)
+

Λ
Λ′ ·

1
U′(W0)

(13c)6

−CM′
(zM) =

∂ p̃r

∂zM (zM, 0) ·
(

E[dr|dr ≤ ϕr,M
2 ] · G(ϕr,M

2 ) + ϕr,M
2 · (1 − G(ϕr,M

2 )
)

(13d)7

First, we note that the automation levels in this setting would differ from those under the socially
optimal setting: the automaker does not consider the full expected cost of accidents in setting
automation levels (Equation (13d)). Equation (13a) indicates that customers equalize the expected
marginal utility of states with full coverage to that of states without full coverage. Additionally,
Equation (13a) reveals that moving from a setting with ϕr,L

2 ≈ 0 (no legacy insurer) to one with
ϕr,L

2 > 0 may have two different effects depending on the shape of the marginal utility curve and
of G(·). This in turn has ambiguous implications on the effect of legacy insurance in the market.
Indeed, without legacy insurance, Equation (13a) becomes:

U′(W0) = E
[
U′(W0 + ϕr,M

2 − dr)|dr > ϕr,M
2

]
(14)

The entry of the legacy insurer introduces the ratio 1−G(ϕr,L
2 +ϕr,M

2 )

1−G(ϕr,M
2 )

< 1 which puts a downward8

pressure on equilibrium W0. However, holding ϕr,M
2 constant, the expected marginal utility of9

uncovered states, E
[
U′(W0 + ∑n∈{M,L} ϕr,n

2 − dr)|dr > ∑n∈{M,L} ϕr,n
2

]
, may increase or decrease.10

In the case of an increase, then there is an upward pressure on equilibrium wealth W0. Now two11

questions remain in order to determine the effect of legacy insurance on the market. First, is the12

increase in marginal utility sufficient to increase in W0, holding ϕr,M
2 constant? Second, how does13

the automaker adjust ϕr,M
2 in response to legacy entry?14

Neither of these questions can be definitively answered a priori but is rather an empirical15

matter. Thus, it appears that one cannot rule out a positive impact from legacy insurance on the16

20
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market, however infinitesimal. If such an impact were to materialize, it would portend that the1

industry need not disappear in the age of automated driving.2

4.3 Numerical example3

Here, ηs = 0, and the cost of accidents on the regular portion of the road is following a distri-4

bution, i.e., dr ∼ LogN (µ, σ2). To highlight the impact of uncertainty in accident costs, we solve5

for the equilibrium of the Nash game between the manufacturer and insurer when the accident6

cost is certain, (dr = 8000), and compare it with the case when it is uncertain and distributed7

according to (dr ∼ LogN (8.9822, 0.01) or dr ∼ Exp(0.000125)). Figure 3 shows the PDF and CDF8

of accident costs, and Table 6 presents the Nash equilibrium results. We can see that automation9

levels are equal in cases with and without uncertainty in accident costs, and there exist multiple10

equilibria.11

We now investigate the effect of legacy insurers on the market. When legacy insurers are12

absent, the manufacturer provides significant coverage (e.g.: $15796 in the third row, resulting in13

over 99% of accidents being covered). When the insurer enters, the customers still receive signif-14

icant coverage (e.g.: a total of $13983 in the fourth row, resulting in over 99% of accidents being15

covered). While the manufacturer ends up shouldering a lesser burden, this does not impact16

safety levels. However, comparing rows 5 and 6, we observe that the introduction of the insurer17

significantly decreases utility and, as a consequence, total demand. This is likely due to signif-18

icantly higher coverage than the expected value of accidents past ϕr,M
2 = $1264.4 (the coverage19

provided by the manufacturer). This seems to imply that, under certain circumstances, the intro-20

duction of legacy insurers in the automated mobility market might actually harm consumers.21

0 1 2 3 4 5

dr 104

0

1

2

3

4

5

6

g(
dr )

10-4

0 1 2 3 4 5

dr 104

0

0.2

0.4

0.6

0.8

1

G
(d

r )

(a) (b)

Figure 3: (a) PDF and (b) CDF of uncertain accident costs distributions.
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Accident cost τ̂M zM ϕr,M
2 τ̂L ϕr,L

2 λ V
1 dr = 8000

7187.1 3.38 8000 - - 2618 4699.8
2 3618.5 3.38 3380.5 3568.7 4619.5 2618 4699.8
3 dr ∼ LogN (8.9822, 0.01)

7187.1 3.38 15796 - - 2618 4699.8
4 3662.3 3.38 6362 3524.8 7621 2618 4699.8
5 dr ∼ Exp(0.000125)

7187.1 3.38 45936 - - 2618 4699.8
6 3832.7 3.38 1264.4 3871.5 171948 2355.3 4489.3

Table 6: Optimal value of decision variables for Nash equilibrium with and without uncertainty in accident cost.

5 Conclusion1

In this work, we investigated safety, liability, and insurance in an automated mobility market.2

We first showed that, in an unregulated setting, non-cooperation and competition between an3

automated vehicles manufacturer, an infrastructure service provider (ISSP), and a legacy insurer4

would lead to sub-optimal safety and insurance levels. Subsequently, we demonstrated that an5

appropriate liability rule could, if implemented, correct the discrepancy between first-best safety6

levels and safety levels in the unregulated market. Importantly, such a rule can be effective7

regardless of whether legacy insurers are present in the market. This raises the question as8

to whether legacy insurance has a role to play in an automated mobility market. Thus, our9

subsequent analysis showed that, in the case in which accident costs are uncertain, we cannot rule10

out that the presence of legacy insurers could benefit customers. However, numerical examples11

seem to indicate that the benefits, if any, could be marginal if not non-existent. In fact, legacy12

insurance might even harm customers.13

While we have conducted extensive theoretical analysis of the automated mobility market,14

there remains substantial work in order to design and effect policies in the automated mobil-15

ity market. For example, we have assumed the existence of indices zM and zI that link safety16

and manufacturing costs. However, how to build these indices from accident data and existing17

technology is unclear. Moreover, the information structure–who knows what about who–is also18

unclear and has not been accounted for here. Our further work will explore these areas.19
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Appendices1

Appendix A Derivation of optimality conditions2

A.1 First-best3

Let τ̂ = ∑n∈{M,I,L}(τ
n + ∑j∈{r,s} ϕ

j,n
1 ) and ϕ̂j = ∑n∈{M,I,L} ϕ

j,n
2 . The FONC with respect to τ̂ and4

ϕ̂j yield:5

λ + λ0 · (τ̂M − cM − ∑
j∈{r,s}

p̃j · ϕ
j,M
2 ) · Λ′ = −λ · 1

∂V
∂τ̂

6

λ + λ0 · (τ̂M − cM − ∑
j∈{r,s}

p̃j · ϕ
j,M
2 ) · Λ′ = λ · p̃j

∂V
∂ϕ̂j

∀j ∈ {r, s}7

It follows from the above that:

− 1
∂V
∂τ̂

=
p̃r

∂V
∂ϕ̂r

=
p̃s

∂V
∂ϕ̂s

=⇒ U′(Wr) = U′(Ws)

(16)

Now, U′(·) is strictly decreasing as a consequence of our DARA assumption. Thus, it follows
that Wr = Ws which implies that ϕ̂r − dr = ϕ̂s − ds. Moreover:

− ∂V
∂τ̂

= (1 − p̃r − p̃s) · U′(W0) + ( p̃r + p̃s) · U′(Wr)

=⇒ U′(Wr) = (1 − p̃r − p̃s) · U′(W0) + ( p̃r + p̃s) · U′(Wr)

=⇒ U′(W0) = U′(Wr) = U′(Ws)

As a consequence, − ∂V
∂τ̂ = U′(W0) and ϕ̂j = dj ∀j ∈ {r, s}. These steps provide the essential8

ingredients to deriving Equations (2a) and (2b).9

Moreover, as a consequence of U′(W0) = U′(Wr) = U′(Ws), ∂V
∂zM = ∂V

∂zI = 0 which is the key10

ingredient to deriving Equations (2c) and (2d).11

A.2 Monopoly and Nash game12

The steps to derive the FONC equations are the same as in the first-best case and identical wealth13

in every state readily obtains.14

A.3 Liability rule optimality15

After forming and taking the derivatives of the Lagrangians for (N-MR) and (N-IR), we obtain16

the following:17

−CM′
(zM,∗) =

∂ p̃r

∂zM (zM,∗, zI,∗) · dr +
∂ p̃s

∂zM (zM,∗, zI,∗) · ϕs,M − µM · A1

(
zM,∗∗ − zM,∗, zI,∗∗ − zI,∗

)
· ds

(17a)

18
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−CI′(zI,∗) · ηs · l =
∂ p̃s

∂zI (z
M,∗, zI,∗) · ϕs,I · λ∗ + µI · A2

(
zM,∗∗ − zM, zI,∗∗ − zI,∗

)
· ds · λ∗ (17b)1

Now, by definition, ϕs,M = α · ds and ϕs,I = (1 − α) · ds. Additionally, at the first-best, we have:2

−CM′
(zM,∗∗) =

∂ p̃r

∂zM (zM,∗∗, zI,∗∗) · dr +
∂ p̃s

∂zM (zM,∗∗, zI,∗∗) · ds (18a)3

−CI′(zI,∗∗) · ηs · l =
∂ p̃s

∂zI (z
M,∗∗, zI,∗∗) · ds · λ∗∗ (18b)4

Thus, assuming that the rule reproduces the first-best technology levels (i.e. zn,∗ = zn,∗∗ for n ∈5

{M, I, L}), we can subtract Equation (18) from Equation (17) and the result derived in Section 3.4.16

readily follows.7

Appendix B Heterogeneity in accident types and severity8

In our model, we have considered that, on either portion of the road, only one type of accident is9

possible. However, in practice, accidents are of different types and come with their own level of10

severity. In this context, we are interested in a) our conclusions regarding optimal coverage and11

liability rules and b) the role of legacy insurers.12

The fundamental assumption in this subsection is that the distribution of accidents is such13

that, for any possible accident, it is possible to draw up an insurance contract. This is equivalent14

to collective insurance coverage between automakers, ISSPs, and legacy insurers being such that15

it covers all possible realizations of accident damage.16

To deal with the heterogeneity in accident types, we resort to the notion of ”pathways to17

harm” introduced in Talley (2019). We assume that there exist multiple pathways to harm de-18

noted by h ∈ H ⊂ R. These pathways to harm are distributed according to a PDF f (·; l) with19

support [h, h] and which parametrically depends on the distance travelled, l.20

Additionally, each of these pathways is associated with a damage level dj
h on road portion21

k. We assume that, all pathways to harm such that h ≤ t can be avoided, where t = T(zM, zI)22

is the maximal pathway to harm that can be avoided with vehicle and infrastructure technology23

zM and zI .24

Assumption 6. An increase in road length decreases the probability that no accident occurs: d
dl

∫ T(zM ,zI)

h f (h; l) ·25

dh < 0.26

In essence, driving longer distances increases the probability of getting into an accident,27

regardless of its type and of the technology level.28

Given our framework, V becomes:29

V = U(W0) · ∏
k

∫ T(zM ,zI,k)

h
f
(

h; ηk · l
)
· dh +

∫ h

T(zM ,0)
f
(

h; ηr · l
)
· U(Wr

h) · dh+

∫ T(zM ,0)

h
f
(

h; ηr · l
)
· dh ·

∫ h

T(zM ,zI)
f
(

h; ηs · l
)
· U(Ws

h) · dh

(19a)30

W j
h = W̃0 − ∑

n∈{M,I,L}
(τn + ∑

j∈{r,s}
ϕ

j,n
1h − ϕ

j,n
2h )− dj

h ∀j ∈ {r, s} (19b)31
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zI,k =

{
0 if k = r
zI if k = s

(19c)1

First, we note that, despite the introduction of different accident types and their related2

damages, the structure of the equation describing the value of car ownership, Equation (19a),3

is essentially left unchanged. Thus, we naturally expect that many of the insights derived in4

Sections 3.2 to 3.4 should carry over. Moreover, we also note that a key driver of the optimality5

of full coverage is that customers are identical in their risk profile and equalize marginal utility6

across states. Thus, the number of states should in itself be irrelevant. We show in Appendix B7

that, indeed, full coverage is still optimal in the first-best, the monopoly, and the Nash game.8

Additionally, in the case of the later, the introduction of a liability rule can still induce first-best9

automation and digitalization levels even in the absence of legacy insurers. Thus, heterogeneity10

in accident types does not induce a necessity for the presence of legacy insurers in the automated11

driving market.12
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