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Experiments, Results and Takeaways
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nput v dmodel help to identify the roadway links - The RCDGCN effectively captures traffic disruptions, as demonstrated through case studies involving various types of traffic incidents.
GON(HD,A) = o (D 44D 4 os)HOWD) |1 8 PPt stonticanty

© POSTER TEMPLATE BY GENIGRAPHICS .600.790.4001 WWW.GENIGRAPHICS.COM



* H= U(AGG(¢51FS11/)S_11’lpszrszlljs_zl’ ""ll)SeFSelps_el))

~exp(Vy)
__ L{:_l EXP{H'}

exp(eij)

a;; = softmax(e;j) = Yien explei)
ceN; AP\ Eik

~exp(Vy)
__ L{:J E_x:_.?_:!{‘.ﬂ-}




	Slide 1
	Slide 2

