Finding Dptimal Sharing Point in Shared Delivery Services Using Google UR-Tools

Реуman Hashemi Baragoari', Bekir Bartin²

Motivation

- The rise of q-commerce, also known as quick commerce or on-demand delivery, has revolutionized the online shopping landscape, emphasizing rapid deliveries within a short time period.
-The CDVID-II pandemic and the subsequent restrictions played a significant role in boosting q-commerce as it allowed retailers to continue operating through quick home deliveries
\square When there is an imbalance in orders, in terms of time or destination, it is often necessary to seek assistance from other drivers. The motivation for this current study stems from need to finding the optimal sharing point (GSP) between the two drivers to minimize the delivery completion time (DCT).

Dbjectives

- Develaping an exact madel and emplaying Google CR -Toals as a metaheuristic aptimization method to determine the QSP within a VRP scenario by incorporating the concept of transfer nades in the pick-up and delivery problems with transshipment (PDPT).
Considering custamer nodes as potential additional sharing points to enhance the delivery system's efficiency
-Incorporating real-world scenarios by utilizing actual network tapology and traffic information.

Methodology

- The methadalagy used to fulfill the objective of this study is twofold:
- First, a mixed-integer linear pragramming (MILP) formulation is designed and implemented to find GSP in a hypothetical scenario on a small scale and solved using the Pyoma package and CPLEX solver.
\square Second, Foagle IR-Tools routing solver was employed to solve the problem an a larger scale.

-The case study area, covers two neighbarhouds, namely Umraniye and Atasehir, located in the Asian side of Istanbul, Turkey, spanning appraximately 21.8 square kilometers.
- A total of 30 customers were selected for the analysis.
-In order to encompass the area, 60 points for sharing have been chosen strategically based on isochrone maps, ensuring coverage within a two-minute trave time threshold.

Results

-Two scenarios were examined to analyze the model's outcomes. Scenario I focused on prioritizing the model's emphasis on optimizing the minimization of the duration of the longest route, while in Scenario ll. the goal was to minimize the total time of two drivers' paths.

Dptimal sharing plan, considering fairness between the two drivers

- In Scenario 1 , the total delivery time for all parcels, amounted to 6.704 seconds, with 3,368 seconds for driver I and 3,336 seconds for driver 2 , respectively. The delivery time difference of 32 seconds between the two drivers is negligible in practice. and the delivery task was completed at $\mathrm{DCT}=3,368$.

Sharing plan focusing on minimizing the summation of delivery times

- In Scenario II, the total delivery time for all parcels amounted to $\mathrm{F}, 694$ seconds, with 2,167 seconds for driver I and 4.527 seconds for driver 2. Comparatively, the summation of DT and WT decreased by 1 I seconds compared to Scenario I.
- However, the delivery time difference between the two drivers is $2,36 \mathrm{Cl}$ seconds, and clearly, a balance in driving time was nat achieved, as was the case in Scenaria

Conclusions

- This paper addressed the finding of GSP for two delivery drivers, madeling it as a multi-depot open-VRP and solving it with the Goagle GRTools routing solver. Dur approach addressed these key objectives:
I. Minimizing DCT to priaritize timely services.
II. Implementing a simultaneous sharing process without the need far physical transfer nades.
III. Incorporating actual network topology and traffic considerations.
IV. Adding flexibility to the sharing pracess by considering custamer nodes as additional patential sharing points.
- The model's flexibility enables users to customize parameters and coefficients for diverse objectives, whether priaritizing tatal delivery time ar minimizing driving time for drivers in different scenarios.

