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Abstract— Naturalistic driving data analysis offers insights
into risky driving behaviors at the trajectory level, which are
critical to traffic safety. However, few studies discuss the mod-
eling challenges of vehicle interactions that are multi-state and
recurrent. In addition, escalation and de-escalation transitions
are two competing events by nature, requiring extra care in
statistical modeling. We propose Markov renewal survival mod-
els along with cause-specific and cumulative incidence function
approaches for such trajectory analysis. This study aims to
quantify transition hazards and predict duration to assess the
impact of off-ramps on driving behaviors at 2 highway segments
in Germany. We use non-parametric, semi-parametric, and
parametric estimations and select the best-fitted models based
on the corrected Akaike Information Criterion (AICc). The
results show that off-ramps significantly increase de-escalation
durations by 27% during risky states, while vehicle types show
statistically significant impacts on escalation transitions as well.
Furthermore, we discuss the limitations of the cause-specific
approach and recommend the use of the cumulative incidence
function for predicting the marginal survival function in the
presence of competing events.

I. INTRODUCTION

Traffic safety evaluation at specific sites requires years
of data collection since crash events are rare. Such a long
data collection process can be reactive regarding that the
crashes have already occurred without prevention strategies
being adjusted in a timely manner. Additionally, safety
evaluations based on crash reports may fail to reveal the
underlying causes of crashes when subject to biases such as
“not-cause-if-normal”. For example, the police put an effort
into investigating whether the crash-involved drivers are
compliant with traffic regulations or not, namely, speeding.
However, it’s usually not their responsibility to question
whether the speed limit itself is set reasonably in the first
place [1]. One consequence is the failure to properly evaluate
the impact of ill-designed infrastructures on driving behav-
iors which results in a systematic risk of accidents. With
computer vision technologies, analyzing naturalistic driving
data becomes available to evaluate road segments proactively.
Different from traditional safety analysis that reactively waits
for crashes to occur, the objective of proactive safety analysis
focuses on evaluating near-crash events identified by safety
surrogate measures at a granular level [2, 3]. According to
the concept in [4], the proportions of crashes, near-crashes,
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potential conflicts, and undisturbed events form a “safety
pyramid” structure. As near-crash events are more frequent
and correlated to crash events, preventing the more frequent
crash conflicts from escalating to crashes becomes intuitive
and theoretically feasible to enhance traffic safety [5].

Survival analysis is a widely adopted proactive safety
evaluation approach for its advantage of quantifying hazards
and associating discrete events with aggregated covariates
[6]. Recent papers mostly used single transition survival
models [7]–[9], disregarding the recurrent multi-state driving
behaviors in naturalistic driving settings. One method to
estimate the hazard functions of recurrent events is to use
the Markov renewal models, which relaxes the Markovian
assumptions by assuming the sojourn times between two
states are independent distributions and only depend on
the recent entering state [10, 11]. A cause-specific Markov
renewal model was applied to study road user behaviors
with recurrent events at a semi-controlled crosswalk in [12].
However, naturalistic driving modelings can be complicated
due to competing events.

Given an interaction pair at a risky state, the transition
from risky to near-crash (escalation) and from risky to safety
states (de-escalation) are two mutually exclusive events,
i.e., only one transition can occur at a time, such two
events are considered as competing events. Modeling the
two competing events requires caution as censoring the
competing events may violate the underlying assumptions
of survival models. There are two common modeling ap-
proaches for competing risks survival analysis: cause-specific
(C-S) hazard and cumulative-hazard function (CIF) [12]–
[15]. Few proactive safety analyses, however, performed
safety evaluations considering the recurrent multi-states with
the presence of competing risks.

The objective of this paper is to quantify the impact
of infrastructure on driving behaviors considering recurrent
and multi-state competing events in a multi-state survival
modeling context using naturalistic driving data. We will first
discuss two Markov renewal multi-state approaches: cause-
specific and cumulative incidence function in section II.
Two road segments, one that has an off-ramp, and the other
without will be described in section III. We further discuss
the advantages and disadvantages of the two approaches
based on empirical results in section IV, with conclusions
summarized in section V.



Fig. 1. Car-following state classification at a highway segment using MTTC

Fig. 2. State Transitions

II. METHODOLOGIES

A. Setting

Fig.1 shows the setting of a highway driving scenario. We
use modified time-to-collisions (MTTC) to classify vehicle
safety states, as it incorporates the variation of acceleration
in highway [16]. ∆H, ∆V , ∆A in (1) represents the differ-
ence between the following vehicle and leading vehicles in
headway, speed, and acceleration.

MT TC =
(∆V )±

√
∆V 2 +2∆H∆A
∆A

(1)

Denote the states of vehicle interaction pair i as S ∈
{0,1,2,3} to mimic the 4 states of the safety pyramid as
illustrated in Fig. 2. Let k ∈ {0,1,2,3,4} represent the 5
transitions among these 4 states. Since crash states are rarely
observed in naturalistic driving data, transition 0 will not be
covered in this case study. In the context of Markov renewal
model, transitions 1 and 4 have a single end state, which can
be modeled as a simple survival model, while transitions 2
and 3 start from the same state, and end in different states,
forming a competing relationship.

Let T denote the continuous time to experience the state
transitions or censoring, and X is the sojourn time between
two consecutive states. δ = 0 represents the transition to
the ending state is observed, δ = 1 right censored. Denote
the probability density function as f (t), the cumulative
distribution F(t), and the survival function is defined as S(t),
which is Pr(T ≤ t). By definition, we have

S(t) = 1−Pr(T ≤ t) = 1−F(t) = 1−
∫ t

0
f (u)du (2)

For the convenience of notation, we will use one subscript
{k} to represent a single transition event in II-B, and {s,e}
to represent start and end states for the multi-state survival
analysis in II-C. Let Zi represent a vector of covariates for

the interaction i, which can be a time-invariant variable such
as vehicle type or a time-variant variable such as speed.

B. Simple Survival Analysis

Simple survival analysis estimates the covariate effect on a
transition with a single ending state. In Fig. 2, the transition
from safe to risky and near-crash to risky events are single
transition events for the Markov renewal model. The hazard
rate for transitions 1 and 4 is defined as,

λk(t) = lim
δ t→0

Pr(t ≤ T < t +δ t|T ≥ t)
δ t

,k = {1,4} (3)

The survival functions can be written as follows (see [17]
for a detailed explanation)

Sk(t) = e−
∫ t

0 λk(u)du (4)

Equations (2) - (4) combined show the relationship among
transition hazard λk(t), survival function Sk(t), and probabil-
ity density function fk(t) for transitions k ∈ {1,4}. Obtaining
one function can infer the rest. A common non-parametric
approach generally infers the survival function first using
Kaplan-Meier (K-M) estimator as below:

Ŝk(t) = ∏
ti<=t

(1− di

ri
) (5)

where di is the number of vehicle interaction pairs experi-
enced the transition event of interest k, and ri is the number
of pairs at risk (uncensored interactions not experiencing
the transition k yet). One important K-M assumption is
that the censoring distributions are non-informative to event
time. Violation of this assumption can result in a biased
estimation [18]. Cox proportional hazard (Cox-PH), as a
semi-parametric approach, models the proportional hazard
function as

λk(t|ZZZ) = λk0(t)eβββ
T ZZZ (6)

The parameter βββ and baseline hazard λk0(t) can be estimated
by maximizing the partial log-likelihood and profile likeli-
hood [19, 20]. Cox-PH compares the relative risk through the
hazard ratio and the model’s proportional hazard functions
can be checked by Schoenfeld’s test [21]. The accelerated
failure time model makes the parametric assumption on the
error term. It models the transition duration X as

logX = βββ
T ZZZ +σε (7)

Depending on the distribution of ε , parametric distribu-
tions can be Generalized gamma distribution, Weibull, Log-
normal, etc. The density distribution of X , if assumed to
be a Generalized gamma distribution, has a density function
written as

f (t) =
α(βββ T ZZZ)ρ tρ(α −1)e−(βββ T ZZZ)tα

Γ(ρ)
(8)

when ρ = 1, it become a Weibull distribution; ρ → ∞ it be-
comes a Log-normal distribution. Other types of parametric
distributions such as Gompertz can be found in [17].



C. Multi-state Survival Analysis

Conditional on the risky state (S = 2), the competing state
space is denoted as E ∈ {1,3}, representing safe and near-
crash. Similar to the simple survival analysis, each approach
can be modeled using non-parametric, semi-parametric, and
parametric estimation.

Cause-specific: For e ∈ E, cause-specific hazard function
is defined as,

λ2,e(x) = lim
δx→0

Pr(x ≤ X < x+δx,E = e|X ≥ x)
δx

(9)

Its cumulative cause-specific hazard function is written as,

Λ2,e(x) =
∫ x

0
λ2,e(u)du (10)

The survival function of the competing transition event from
2 to e is

S2,e(x) = e−Λ2,e(x) (11)

S2,e(x) is not the marginal distribution unless the two
competing events are independent. Since escalation and de-
esclation transitions at the risky state are competing events
by nature, the survival function of risky events S2(x) =
e−∑ j∈E Λ2,e(x) is thus, smaller or equal to S2,e(s) (see [22]
for a detailed explanation.) Cause-specific non-parametric
estimation assuming the competing event as censored is
similar to (5). The semi-parametric models of the cause-
specific hazards can be modeled using Cox regression as
shown in (6). As for parametric estimation, AFT models
the observed durations X̃2 as min(X21,X23), replacing the
duration X in (7).

Cumulative Incidence Function: Due to the dependent
nature of the escalation and de-escalation transitions, the
marginal distribution becomes unidentifiable [23]. In order
to estimate the marginal probability of competing events,
Fine and Gray [14] proposed to model the Cox regression on
the cumulative hazard function based on the subdistribution
hazard h2,e(x):

lim
δx→0

Pr(x ≤ X < x+δx,E = e|(X ≥ x)∪ (E ̸= e,X < x))
δx

(12)
The subdistribution hazard function assumes that the oc-

currence of one event leads its competing event time to
infinity. The cumulative subdistribution hazard function is
written as,

H2,e(x) =−
∫ x

0
h2,e(u)du (13)

The cumulative incidence function, also known as the crude
incidence function or subdistribution function, is defined by

I2,e(x) = Pr(X <= x,E = e) (14)

The relationship between I2,e(x) and λ2,e(x) is

I2,e(x) =
∫ x

0
λ2, j(u)S2(u)du (15)

Expressing the cumulative incidence function by cumulative
subdistribution hazard is given by,

I2,e(x) = 1− e−H2,e(x) (16)

Unlike the C-S non-parametric estimation, the CIF non-
parametric approach models the survival function by adjust-
ing the competing events in the risk set, this estimator is
called the Aalen-Johnsen estimator. The semi-parametric ap-
proach for the subdistribution cumulative incidence function
I2,e(x) is known as the Fine-Gray model. The parametric AFT
models the latent duration X∗

2,e = 1(E = e)×X2,e +1(E ̸=
e)×∞, which is also called as the crude-risk AFT model
[15].

D. Model Selection Criterion

In order to select a parsimonious regression model, we
adopt the corrected Akaike information criterion (AICc)
considering the potential small sample sizes N in near-crash
states [24].

AICc =−2logLik+2k× N
N − k−1

(17)

where k represents the model degree of freedom.

III. NATURALISTIC DRIVING DATASETS

We analyzed a highway naturalistic driving dataset col-
lected by drone in Germany. The data quality has been
validated for the purpose of safety evaluation [25, 26].
The dataset contains 110,500 vehicles and 44500 driven
kilometers with a 25 Hz frame rate. Our objective is to assess
the off-ramp effects on risky driving behaviors adjusted for
other factors such as vehicle types, speed, and volume.

A. Scope

We focus on 2825 car-following from the 58th to 60th
vehicle trajectory recordings since they are three-lane road
segments containing with and without off-ramps. Data is
collected around 9:00 to 9:30 AM on Wednesday. The
average traffic density of 0.055 vehicles per meter. Few of
the following vehicles (< 0.1%) are congested (< 16m/s).
About 60 % are below the speed limit (33 m/s) with the off-
ramps, and 76 % below the speed limit without off-ramps.
The states are classified using (1) based on the cumula-
tive distribution functions mapping between the surrogate
measure (seconds) and percentiles (%). The selection of
threshold requires engineering needs, we use the percentile-
based threshold [27] in this case study. MTTC between 0
seconds and 20% are defined as “near-crash” states, 20% to
80% “risky”, and negative, greater than 80% or null values
(no preceding vehicles) are “safe” states. This is to mimic
the “safety pyramid” structure that “near-crash” events are
rare [4]. A parsimonious model includes time-independent
variables such as vehicle type (vehicle vs. truck), and off-
ramp (w/ vs w/o). As for the time-dependent variables, we
include average speed, average acceleration, and left and
right vehicle counts of the following vehicle in state duration.
The car and truck ratios of w/ and w/o off-ramps are 0.81 and
0.79, respectively. The minimum number of adjacent vehicles
for the two comparison groups is 0 while w/ off-ramp has a
maximum of 5 unique adjacent vehicles and 6 for w/o off-
ramp group. The average speed acceleration distribution for
off-ramps is visually left-shifted compared with no off-ramps



Fig. 3. Distribution of speed and acceleration of following vehicles

in Fig.3. How do these covariates affect each state transition
will be answered in section IV.

B. Preprocessing

Since the existing function msprep in R package mstate
is not applicable to recurrent transitions, we developed a
preprocessing algorithm to extract the trajectories to match
the “wide” formatting requirements from [28]. The main
procedures are summarized in Alg. 1. To increase the model’s
robustness, continuous variables are discretized and factor-
ized based on whether the speed is above the speed limit,
acceleration is greater than 0 m/s2 and, the nearby vehicles
are present (≥1). If the state remains unchanged throughout
the observational time window, the ending states are censored
by definition (see self-transition in Fig. 2). Additionally, the
occurrence of competing events is treated as censored in the
C-S modeling approach, while in the CIF approach, treated
as the other factor kept in the risk sets [29].

Algorithm 1 Major steps for processing trajectory data
1: for vehicle interactions i =1,2,. . . ,N do
2: Calculate the MTTC of the car following interactions
3: Classify the safety state of the following vehicles
4: Transform the data frame into a wide format
5: Merge the data with time-independent covariates
6: Merge the data with time-dependent covariates
7: end for
8: Discretize and perform factorization on the covariates
9: Define transition matrix and censored events

IV. MULTI-STATE TRAJECTORY ANALYSIS

Cause-specific and cumulative approaches are being im-
plemented separately. We used flexsurv package in R [30] for
C-S approach and survival package [29] for CIF approach.
The best-fitted (semi-) parametric models are evaluated by
choosing the smallest AICc values.

A. Model Identification

We deployed 4 parametric assumptions for the AFT model
using the Weibull, Gompertz, generalized gamma, and Log-
normal distribution. The baseline model is compared with
the semi-parametric model (Cox-PH, Fine-Gray). We sum-
marized the model selection metrics in Table I. The best-
fitted AFT models for escalation transitions (2 and 4), are
the generalized gamma distributions for both C-S and CIF

TABLE I
SEMI-PARAMETRIC AND PARAMETRIC MODEL EVALUATION

Transition Distribution LogLik AICc p-value∗
Cox-PH -1324.4 2659.0 > 0.05

Gompertz -1400.1 2814.6 -
1 Weibull -1377.7 2769.8 -

Generalized Gamma -1362.6 2741.7 -
Log-normal -1362.7 2739.8 -

Cox-PH -1918.5 3838.4 > 0.05
Gompertz -2019.5 4053.0 -

2 Weibull -2012.2 4038.6 -
(C-S) Generalized Gamma -1990.1 3996.3 -

Log-normal -1997.2 4008.4 -
Cox-PH -11736.9 23475.1 > 0.05

Gompertz -9353.4 18720.8 -
3 Weibull -9277.3 18568.8 -

(C-S) Generalized Gamma -9172.9 18362.0 -
Log-normal -9173.7 18361.6 -

Fine-Gray -2152.3 4314.7 <0.05
Gompertz -2260.3 4534.7 -

2 Weibull -2383.3 4780.7 -
(CIF) Generalized Gamma -2257.4 4530.8 -

Log-normal -2359.9 4734.0 -
Fine-Gray -12357.8 24725.6 <0.05
Gompertz -10071.5 20157.1 -

3 Weibull -10288.8 20591.7 -
(CIF) Generalized Gamma -9797.5 19611.2 -

Log-normal -9994.2 20002.5 -
Cox-PH -7549.5 15100.1 <0.01

Gompertz -7155.4 14324.9 -
4 Weibull -7160.7 14335.6 -

Generalized Gamma -7067.8 14151.7 -
Log-normal -7082.7 14179.4 -

∗Proportional hazard assumption diagnostics using cox.zph

approaches. As for de-escalation transitions (1 and 3), Log-
normal distribution is found to be the best for the C-S
approach.

Violation of the proportional hazard assumption is one of
the major limitations of the Cox-PH model [31]. For the
semi-parametric model, based on the p-values of the scaled
Schoenfeld residual test, no proportional hazard assumption
is violated except for the transition from a risky state in CIF
approach, and the transition from the safe to the risky state.

B. Model Estimation

The estimated parameters for both approaches are summa-
rized in Table II. For transitions 1 and 4, the C-S and CIF
approaches provide the same parameter estimations, which is
as expected as the lacking of competing events resulting in no
difference in censorship. The challenging part is to interpret
the results of the competing events when the estimations of
the two approaches become inconsistent [32]. Cause-specific
approaches are recommended for the purpose of understand-
ing the impacts of covariates, regardless of the competing
events [15, 33]. Conditional on risky states, the presence
of an off-ramp can increase the de-escalation duration by a
factor of 1.28 at the significance level of 0.05, adjusting for
all other covariates. Based on the semi-parametric model, the
cause-specific hazard ratio is 0.78, which represents that off-
ramp reduces the de-escalation hazard rates given that the
interaction pair does not experience censoring or competing



TABLE II
A COMPARISON OF HAZARD RATIO AND PARAMETER ESTIMATION WITH CONFIDENCE INTERVAL

Cause-Specific Cumulative Incidence Function
Transition Variable Parametric Semi-Parametric Parametric Semi-Parametric

eβ̂ (95 %CI) HR (95 %CI) eβ̂ (95 %CI) HR (95 %CI)
Off-ramp (vs.w/o) 1.42 (1.18,1.71) 0.61 (0.47,0.80) 1.42 (1.18,1.71) 0.61 (0.47,0.80)

Car (vs. truck) 1.28 (1.03,1.59) 0.60 (0.43,0.83) 1.28 (1.03,1.59) 0.60 (0.43,0.83)
1 Above speed limit (vs. below) 0.98 (0.82,1.19) 1.13 (0.86,1.48) 0.98 (0.82,1.19) 1.13 (0.86,1.48)

(Non-competing) Acceleration (vs. deceleration) 1.12 (0.89,1.40) 0.93 (0.66,1.30) 1.12 (0.89,1.40) 0.93 (0.66,1.30)
Adjacent (vs. non-adjacent ) 1.33 (1.12,1.58) 0.64 (0.49,0.83) 1.33 (1.12,1.58) 0.64 (0.49,0.83)

Off-ramp (vs. w/o) 0.91 (0.72,1.16) 1.04 (0.77,1.41) 0.90 (0.69, 1.17) 1.25 (0.92, 1.70)
Car (vs. truck) 0.65 (0.49,0.86) 2.21 (1.47,3.32) 0.98 (0.55, 1.71) 2.44 (1.63, 3.65)

2 Above speed limit (vs. below) 0.90 (0.72,1.13) 1.30 (1.00,1.68) 1.02 (0.82, 1.26) 1.20 (0.93, 1.56)
(Competing) Acceleration (vs. deceleration) 0.88 (0.69,1.13) 1.27 (0.92,1.76) 0.92 (0.76, 1.11) 1.44 (1.05, 1.98)

Adjacent (vs. non-adjacent ) 1.44 (1.16,1.79) 0.58 (0.45,0.75) 0.97 (0.73, 1.27) 0.91 (0.72, 1.17)
Off-ramp (vs. w/o) 1.28 (1.16,1.42) 0.78 (0.68,0.88) 1.27 (1.14, 1.41) 0.79 (0.70, 0.89)

Car (vs. truck) 1.10 (1.00,1.21)) 0.82 (0.73,0.93) 1.02 (0.92, 1.12) 0.77 (0.68, 0.87)
3 Above speed limit (vs. below) 1.00 (0.92,1.09) 1.08 (0.97, 1.21) 1.08 (0.99, 1.19) 0.96 (0.85, 1.07)

(Competing) Acceleration (vs. deceleration) 1.17 (1.06,1.30) 0.84 (0.73, 0.96) 1.15 (1.03, 1.28) 0.82 (0.72, 0.93)
Adjacent (vs. non-adjacent ) 1.56 (1.45,1.68) 0.58 (0.52,0.64) 1.35 (1.24, 1.47) 0.75 (0.68, 0.83)

Off-ramp (vs. w/o) 0.95 (0.81,1.12) 0.99 (0.83,1.19) 0.95 (0.81,1.12) 0.99 (0.83,1.19)
Car (vs. truck) 0.84 (0.72,0.98) 1.17 (0.99, 1.37) 0.84 (0.72,0.98) 1.17 (0.99, 1.37)

4 Above speed limit (vs. below) 1.22 (1.06,1.40) 0.73 (0.63, 0.84) 1.22 (1.06,1.40) 0.73 (0.63, 0.84)
(Non-competing) Acceleration (vs. deceleration) 1.22 (1.03,1.43) 0.79 (0.66, 0.95) 1.22 (1.03,1.43) 0.79 (0.66, 0.95)

Adjacent (vs. non-adjacent ) 2.33 (2.06,2.63) 0.41 (0.36, 0.47) 2.33 (2.06,2.63) 0.41 (0.36, 0.47)

events. Moreover, the acceleration and presence of nearby
vehicles can both increase the de-escalation duration. The
results suggest the underlying impact of the off-ramp on
traffic safety hazards before accidents occur.

One limitation of the cause-specific approach is that it
can be a biased estimator for predicting marginal survival
functions as shown in Fig. 4. The cumulative function is
inflated and it crossed the other events’ survival function.
Due to treating the competing events as censored, it can
have an upward bias for the cumulative function, since
I2,1(x) = 1−

∫ x
0 λ2,1(u)S2(u)du < 1−

∫ x
0 λ2,1(u)S21(u)du, and

a downward bias for the marginal survival function, since
S2,k(x) < 1− I2, j = e−H2, j(x) [13, 34]. As a comparison, the
CIF approach treating the competing risks as potential risk
sets can adjust the biases, and provide a better understanding
than using the cause-specific hazard approach alone [35].

C. Model Prediction

We further applied CIF to predict marginal distribution
functions. For de-escalation transition 3, the presence of an
off-ramp has increased the subdistribution hazard rate by
a factor of 1.27 (95% CI: 1.14-1.41), which is significant
at 0.05 level. Compared with trucks, vehicles on average
have increased the hazard by a factor of 1.02 (95% CI 0.92-
1.12), however, the impacts of vehicle types are found to be
insignificant. Fig. 5 predicts the marginal survival probability
of transition 3 and the cumulative function of transition 2
for interaction pairs at the risky states. The presence of an
off-ramp has increased the median durations of a vehicle
transitioning from a risky state to a safe state by 27%
compared with one without an off-ramp.

One limitation is that our naturalistic driving data is non-
experimental data, and its covariate effects should not be
interpreted as a causal effect, which requires a randomized
control experiment or causation analysis [1]. Nevertheless,
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Fig. 4. A comparison of survival curves and cumulative incidence function
curve between cause-specific and cumulative incidence approach with 95%
confidence intervals. The two competing event curves crossed suggesting
the cause-specific has a biased estimation for marginal survival function.

the model results can help to understand the correlation
between risk-driving behaviors and off-ramps under the
context of multi-state state transitions.

V. CONCLUSIONS

We used Markov-renewal multi-state survival models to
analyze highway naturalistic driving data from Germany.
Best-fitted parametric distributions for C-S de-escalation
transitions are log-normal, and generalized gamma distribu-
tions for escalation transitions. Results show the presence of
nearby vehicles can increase the duration of both escalation
and de-escalation transitions significantly. Adjusted for other
variables, off-ramp can statistically reduce the cause-specific
hazard of de-escalation transitions by a factor of 1.16−1.42
at risky states. Its impact on escalation transitions, however,
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Fig. 5. The effects of off-ramp and vehicle types on escalation and de-
escalation transitions from risky states with average speed above the speed
limit, average acceleration greater than 0, and presence of nearby vehicles.
The CIF approach is recommended for predicting marginal distributions.

is not significant. Cars show a 14%−51% reduction in the
escalation transition duration compared with trucks signifi-
cantly. Although the cause-specific approach has its benefit
in interpretation, we demonstrated its limitation in predicting
marginal survival functions as shown in Fig. 4. Hence, we
recommend using the cumulative incidence approach as a
supplement when competing events are present in highway
naturalistic driving data.
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