
  

  

Abstract — High-Density Truck Platoons (HTPs) introduce 
new safety challenges for Human-Driven Vehicles (HDVs) near 
freeway diverging areas due to their extensive spatial and 
temporal occupancy. When navigating around an HTP, HDVs 
approaching off-ramps face two Evasion Maneuver Choices 
(EMCs): Platoon Front Overtaking (PFO) and Platoon Back 
Evading (PBE). To evaluate EMCs safety, we conducted driving 
simulation tests in scenarios with short, medium, and long 
distances of releasing. We used trajectory data to derive 
Anticipated Collision Time (ACT) and other behavior and safety 
metrics. A generalized extreme value (GEV) model based on 
ACT was utilized to evaluate the crash risk during the lane-
changing process to evade the HTP. The results indicated that in 
the short scenario, the crash risk for PFO is higher, while in the 
medium scenario, the crash risk for both ACPs is roughly equal. 
The long scenario sees PBE as the riskier behavior. In addition, 
the crash risk notably decreases when transitioning from short 
to medium scenarios, regardless of the selected EMCs. These 
findings have important implications for the development of 
lane-changing assistance devices for HDVs and safety-oriented 
lane management strategies near freeway diverging areas. 

I. INTRODUCTION 

A notable application of autonomous and cooperative 
driving technologies is in the formation of High-Density Truck 
Platoons (HTPs), an innovative concept that connects multiple 
trucks at a minimal inter-vehicle distance to form a convoy. 
This configuration leverages the vehicular network and 
automated driving control system to significantly reduce air 
drag [1], leading to notable benefits in energy conservation and 
lower carbon emissions [2, 3]. While the technical feasibility 
of HTPs is well-documented in the literature [4], such as 
Vehicle-to-Vehicle Communication, Adaptive Cruise Control, 
Autonomous Emergency Braking, Automated Lane Keeping, 
there is a notable research gap regarding their safety 
implications, particularly in scenarios involving Human-
Driven Vehicles (HDVs). Given the gradual adoption of 
Autonomous Vehicles (AVs), it is anticipated that mixed 
traffic conditions involving both AVs and HDVs will persist 
for a considerable period [5]. The safety impact of HTPs on 
HDVs in this mixed scenario, thus remains an important, yet 
largely unexplored, area of research. 
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Diverging areas on freeways are characterized by a high 
demand for lane changing [6]. In these zones, vehicles that are 
intending to exit the freeway must shift from the central lanes 
to the exit ramp's designated lane. This mandatory lane 
switching necessitates a change in speed to ensure a safe exit, 
leading to a heterogeneity in both lateral and longitudinal 
vehicle movement. This variation in movement can disrupt the 
flow of mainline traffic, potentially causing conflicts and even 
collisions. Historical crash data highlights that even in the 
absence of HTPs, these diverging areas on freeways are 
particularly prone to accidents[6-8]. The introduction of HTPs 
further complicates this situation due to their prolonged spatial 
and temporal occupancy and the visual obstruction they cause 
for other drivers. In this situation, the driver has two Evasion 
Maneuver Choices (EMCs) in response to HTP: Platoon Front 
Overtaking (PFO) and Platoon Back Evading (PBE). 
Understanding the risk associated with each EMC is crucial, 
as it can guide drivers to make safer and more informed 
decisions.  

In an effort to address the existing research gap, this study 
seeks to evaluate the safety of EMCs when HDVs interacting 
with HTP in the vicinity of freeway diverging areas. We 
conducted a driving simulator experiment with thirty 
participants, featuring a configuration of a leading vehicle, a 
participant-driven main vehicle, a vehicle following the main 
vehicle, and an HTP. Participants in the experiment were 
instructed to follow the leading vehicle, which was driving 
alongside an HTP until the leading vehicle changed lanes. The 
distance from the point where the leading vehicle changed 
lanes to the exit ramp is referred to as the Distance of 
Releasing (DR) in this study. This DR can provide insight into 
the difficulties associated with mandatory lane changing near 
freeway exits. We tested three scenarios with different DRs, 
short DR scenario (300m, 400m) medium DR (500m, 600m), 
long DR (700m, 800m). Throughout the experiment, the 
vehicle trajectory and vehicle dynamics such as speed, 
accelerate for all vehicles were recorded for further analysis. 

Based on the experimental data, we identified the stable car 
following stage and the Mandatory Lane Change Stage 
(MLCS) using the Gaussian Mixture Model (GMM). For the 
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MLCS, a series of safety surrogate measures are computed and 
a crash risk model based on Extreme Value Theory (EVT) was 
developed to quantify the driving risk of the main vehicle in 
different EMCs and scenarios.  

The experimental design of driving simulation, indicator 
analysis and modelling techniques are described in Section II. 
Section III provides a specific analysis of the modelling results 
and crash risk. Section IV discusses the study findings, and the 
conclusions are presented in Section V. 

II. METHODOLOGY 

A. Design and Development of Driving Simulation 
Experiments 
This study employed a fixed-base driving simulator for 

data collection. The simulator was equipped with a full-sized 
chair, steering wheel, and accelerator and brake pedals, 
mimicking the control features of a real vehicle. The three-
dimensional simulated road environment was projected onto 
three screens in front of the driver, each with a resolution of 
1920×1080, affording a 210-degree forward field of view. To 
enhance the immersive experience, left and right audio 
systems were utilized to simulate engine, road, and traffic 
noises, providing an auditory environment that mimics real-
world driving conditions. The simulation software used for the 
experiment was SCANeR Studio, version 1.8.28. 

 

  

  
Figure 1. Driving simulator and 3-D road environment. 

 
We recruited thirty drivers to participate in the experiment. 

Prior to the experiment, each driver provided informed consent, 
completed a questionnaire capturing basic demographic 
information and took a 5-min test drive under the guidance of 
a lab assistant to ensure they could get familiar with the 
simulator. The participant group consisted of 17 men and 13 
women, aged between 22 to 50 years, with a mean age of 30.44 
years and a standard deviation of 8.11 years. All participants 
possessed a valid driving license, indicating they were legally 
qualified to operate a vehicle. The driving experience among 
participants varied, with a mean of 7.17 years and a standard 
deviation of 5.86 years. 

The experiments were conducted using a simulation of a 
real-world section of the Chengdu 4th Ring Freeway. This 
section extends from 6 kilometers before Exit ramp 67 to 1 
kilometer beyond the same exit ramp, also known as the Pidu 
exit. The simulated section includes a 150-meter off-ramp and 
a 200-meter deceleration lane leading to the ramp. The 
construction of the simulated scene utilized software tools 

such as SCANeR Studio, 3DS Max, and Open Street Maps. 
These tools were used to create the road alignment, surface, 
markings, and environmental objects. Additional features such 
as traffic signs and barrels were also incorporated to provide a 
realistic driving environment. The experimental road section 
is 7 kilometers in length with a speed limit of 120 kilometers 
per hour. It features three lanes in each direction, each with a 
width of 3.75 meters, closely resembling the actual physical 
specifications of the Chengdu 4th Ring Freeway. 

The following experimental scenario was established for 
this study: a participant-driven vehicle, designated as the Main 
Vehicle (MV), headed towards Pidu, while a leading vehicle 
(LV) maintained its position on the same lane in front of the 
MV. As the MV approached the off-ramp, it encountered a 
HTP consisting of 10 trucks with 2.5m inter-vehicle spacing, 
occupying the rightmost lane (refer to Figure 2 (a)). At a 
specific location, the LV changed lanes to the left, freeing the 
space ahead of the MV (Figure 2 (b)). This change allowed the 
MV driver to decide the optimal timing and EMC (Figure 2 
(c)(d)) to evade the HTP and transition onto the off-ramp. To 
measure the potential risk of rear-end collisions, each 
experiment also included a Rear Vehicle (RV) that followed 
the MV. Throughout the experiment, the RV was programmed 
to stay in its lane and consistently maintain a target time gap 
of 2.5 seconds behind the MV. LV, MV and RV occupied the 
second lane from the right. Except the RD, other conditions 
were consistently maintained across all experiments. 

 
Note: (a) LV is leading the MV; (b) LV lane changing process and remaining distance; (c) EMC 1: 
Platoon Front Overtaking; (d) EMC 2: Platoon Back Evading. 

Figure 2. Illustration of experimental design. 
 

The parameters for the HTP were set as follows: the overall 
length of the platoon was 92.8 meters, each individual truck 
measured 7.0 meters, the inter-vehicle spacing was 2.5 meters, 
and the platoon traveled at a speed of 90 km/h. Previous 
studies have reported Time Headway (THW) values typically 
ranging between 0.3 and 1.5 seconds [9-11], with some 
research specifying a THW of 0.3 seconds for high-density 
platoon scenarios [12-14]. To emulate the characteristics of an 
HTP, our study set the inter-vehicle THW to approximately 
0.38 seconds. In each experimental scenario, the timing for the 
LV lane change was adjusted according to predefined DR 
(refer to Figure 2b), set at three scenarios: short scenario 
(300m, 400m) medium scenario (500m, 600m), long scenario 
(700m, 800m). Each participant completed six trials, with each 
trial taking roughly 4 minutes to complete. Upon reaching the 
HTP, the LV keeps the same speed as the platoon and 
maintained a parallel course for a certain period. The LV keeps 
a distance of 24m from the head of the first truck in the HTP 
before it changes its lane to the left. 



  

B. Dataset and Indicators 
This study gathered driving data from a total of 180 driving 

simulation tests, which were performed by thirty different 
drivers, each conducting six tests (30 x 6=180 tests). However, 
data from three tests had to be discarded due to technical 
malfunctions with the equipment. The collected data included 
vehicle trajectory, speed, and acceleration for all vehicles 
involved. The distance between vehicles was calculated based 
on the trajectory data. The experiment consisted of two stages: 
the car following stage and the Mandatory Lane Changing 
Stage (MLCS). As the latter stage presents a more complex 
interaction and increased risk, our study focused solely on the 
risk during the MLCS. Consequently, it was crucial to clearly 
identify the MLCS for subsequent data analysis. However, 
given that the influence of the HTP varied among different 
tests, a fixed time window wasn't suitable for selection. Instead, 
drawing inspiration from Zhao's study (16), we incorporated 
the GMM to identify the MLCS. 

Four Driving Performance Indicators (DPIs) and four 
Surrogate Safety Measures (SSMs) were computed as the 
covariates to build the EVT model. The four DPIs are speed, 
acceleration, Distance to Ramp (D2R), and Distance to the 
Platoon Center (DPC). The SSMs include Anticipated 
Collision Time (ACT), Acceleration Noise, Deceleration Rate 
to Avoid Collision  (DRAC) and Time Extended ACT (TE-
ACT). 

D2R: D2R is the instantaneous measurement reflecting the 
distance between the current location of the MV and the off-
ramp (see Figure 3 (a)).  

DPC: the distance to the center of the HTP. When the MV 
is behind the HTP center of, DPC is positive (see Figure 3 (b)), 
and when the MV is ahead of the HTP center, DPC is negative 
(see Figure 3 (c)). 

ACT: In this study, we require an indicator not only to 
measure the risk of a forward collision but also the risk of lane 
changing. Traditional conflict indicators, such as TTC and 
PET, are not suitable in this context. A two-dimensional 
extension of TTC that can reflect the crash risk corresponding 
to different crash types [15]. For the two different EMCs, the 
ACT between the MV and the vehicle which has the maximum 
crash risk with the MV is calculated. Specifically, for the PFO 
(Figure 2 (c)), the ACT between the MV and the head of HTP 
was calculated; in the PBE (Figure 2 (d)), the ACT between 
the RV and the MV was calculated.  

Acceleration Noise: Acceleration noise is the standard 
deviation of acceleration during the MLCS.  

DRAC: DRAC is a widely used SSI and indicates the 
minimum deceleration required for a following vehicle to 
avoid a crash with a leading vehicle [16]. Generally, a larger 
DRAC represents a more dangerous driving condition. In the 
experiment, there are many vehicles, the same as ACT, the 
DRAC which capture the riskiest situation is calculated. In 
PFO, the DRAC was calculated for the MV (following vehicle) 
and the first truck of the HTP (leading vehicle). In PBE, the 
DRAC was calculated for the RV (following vehicle) and the 
MV (leading vehicle). 

 
Figure 3.  The illustration of the D2R and DPC. 

TE-ACT: The cumulative time that the ACT is below the 
threshold. The greater the TE-ACT reflects a higher exposure 
to the dangerous driving situation. Refers to the studies of Xing 
[17] and Fu[18], the threshold value of ACT was determined 
as 3 s.  

C. Generalized Extreme Value (GEV) Model Development  
To model the crash risk, ACT was selected as the primary 

conflict indicator. Common safety indicators used to establish 
extreme crash risk models include TTC, PET, and MTTC[18-
21]. These indicators, when less than 0 in value, imply the 
occurrence of an accident. ACT shares this property, and 
additionally, ACT is capable of reflecting conflict involving 
lane changing[22], which meets the requirements of our study. 

The prerequisite for using EVT for crash risk calculation is 
that the occurrence of extremely small ACTs must be 
adequately modeled so that the probability of a crash can be 
derived[23]. Therefore, it is crucial to decide how to select the 
extremes. There are two common ways: Block Maxima (BM) 
and Peak over Threshold (POT). A number of studies have 
shown that the threshold selection in POT model is a major 
challenge, and it’s hard to address the issue of serial 
dependence[24]. It's important to note that the EVT 
presupposes that the extreme value samples used for modeling 
adhere to independent and identically distributed conditions. 
Given the use of partitioned block sampling for extreme values, 
the BM method inherently addresses this issue during the 
process of parameter estimation, as noted in previous 
studies[23, 24]. In addition, small ACTs are rare events that 
also matches the adaptability of BM. Therefore, the BM model 
is used for this study. 

The BM model involves dividing the data into blocks at 
certain intervals and selecting the block maximums to fit the 
GEV distribution. The kth largest sample in a set of 
independent identically distributed samples in a block can be 
denoted as: 

 𝑀!
(#) = 𝑘%&	𝑙𝑎𝑟𝑔𝑒𝑠𝑡	𝑜𝑓	{𝑋', 𝑋(, … , 𝑋!} (5) 

Where, Xi represents the sample observation and 𝑀!
(#) 

denotes the kth largest sample observation within a block. 
When n tends to infinity, for the first k largest samples, their 
joint probability density function is (for  𝜉 ≠ 0 ).  
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where the location (μ), scale (σ), and shape parameters (x) 
of the equation need to satisfy 𝜎 > 0, and 𝜇 and  𝜉 are real 
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number; and 𝑥()) ≤ 𝑥()*') ≤ ⋯ ≤ 𝑥(') ; and 𝑥(#): 1 + 𝜉 ×
𝑠) > 0 for k=1,2,…,r.  

Similar to previous studies that used driving data to 
develop extreme value models to assess the crash risk[21, 24, 
25]，this study also the MLCS of each driver as a block. 
Therefore, the duration of each block varies depending on the 
MLCS duration. In order to get enough extreme values for 
modeling, instead select only one sample in each block, we use 
the smallest r ACTs from each block. To ensure the r ACTs 
represent the real dangerous situation, only ACTs below 3s are 
selected[21, 26-29]. Then, to decide the optimum r value, we 
used Akaike information criterion (AIC) and Bayesian 
Information criterion (BIC)[23, 24].  

Two kinds of GEV models, a stationary model and non-
stationary models are built separately for both ACPs. A 
stationary model is a GEV model without other covariates. 
And the non-stationary GEV models are the models with other 
covariates. In non-stationary GEV models, we integrated 
covariates into the GEV model's location parameter (µ) via the 
identity link function[22, 24, 30], as outlined in the following 
mathematical expression. 

 𝜇+ = 𝜇, + 	𝜷𝒀 (8) 

where 𝜇+ denotes the location parameter of the GEV model, 
𝜷 denotes the estimated coefficients of the covariates, and 𝒀 
denotes the covariates added to the model.  

Similar to the method of finding the optimum r, AIC and 
BIC are used to find the best combinations of the covariates 
for non-stationary GEV models, and the models with smaller 
AIC/BIC are preferred.  

As previously state, ACT is the main variable for GEV 
modeling. When a pair of vehicles do not approach each other, 
the ACT value is positive infinity. Otherwise, ACT is a 
positive real number. Similar to TTC, a smaller ACT 
represents a higher risk, and a hypothetical ACT which is zero 
or less than zero can represent a collision. Because the GEV is 
only applicable to the largest values within the blocks, we need 
to add a negative sign to ACT so that the ACT values represent 
higher risk will be captured by the GVT model [12, 21, 23, 24, 
27, 31]. Thus, the probability of a crash is converted to the 
probability of a negative ACT greater than or equal to zero, 
and the mathematical form is expressed as follows. 

 𝑅 = 𝑃(𝑍 ≥ 0) = 1 − 𝐺(0) (9) 

where, R and Z denote the risk of collision and the 
maximum negative ACT respectively, and G (·) is the fitted 
GEV distribution. 

III. RESULTS 

A. GEV Model Results 
Following the computation of AIC and BIC for non-

stationary models incorporating different combination of 
covariates across a range of r values (from 1 to 8), the optimal 
r value was established as 5. After the r is set to 5, the best set 
of covariates are decided as D2R, speed, DPC, DRAC, and 
TE-ACT. Then, to establish a foundation for comparison, we 
also constructed stationary models to serve as our baseline.  

Evidence of the accuracy of our model selection between 
stationary and non-stationary models came from the 
likelihood-ratio test results (see TABLE I). These showed that 
introducing covariates to the location parameters of PFO and 
PBE led to significantly better model fits compared to 
stationary models. This improvement was statistically 
significant with a p-value less than 0.001, indicating that our 
results are valid at a 95% confidence level.  displays kernel 
probability density plots of the best non-stationary for PFO 
and PBE. Upon examination of these kernel probability 
density plots, we found a close alignment between the fitted 
model and empirical data. 

TABLE I.  FITTING EFFECT (AIC AND BIC) OF STATIONARY MODEL 
AND BEST NON-STATIONARY MODEL 

Model AIC BIC Likelihood-ratio Test 
Stationary PBE model 185 192 

P<0.05 
Best non-stationary PBE model -54 -36 
Stationary PFO model 123 129 

P<0.05 
Best non-stationary PFO model -1 15 

The structure of the data and the statistical summary are 
shown in TABLE II. Given the nature of these variables, Max(-
ACT), speed, acceleration, D2R, DPC,DRAC are all instant 
data that is corresponding to a specific time point and indicate 
the state of the HDV. Acceleration noise and TE-ACT are the 
process variables measuring the process during MLCS. 
Therefore, their values won’t change in the same MLCS. DR 
is the scenario level variable that indicates the initial condition 
of a scenario. DR won’t change in the same scenario.  

The optimal non-stationary models identified for both 
EMCs share the same set of covariates: D2R, speed, DPC, 
DRAC, and TE-ACT as shown in TABLE III. In our model, we 
assume that the scale and shape parameters are not changing 
with covariates. These covariates directly influence the 
location parameters of the GEV distribution, which in turn 
affect the crash risk. As such, the location parameter serves as 
a critical determinant of crash risk: a larger location parameter 
corresponds to a higher expected number of crashes[19]. 

TABLE II.  THE STATISTICAL SUMMARY OF THE VARIABLES 

Variables Level PFO Mean PBE Mean 
Mean S.D. Mean S.D. 

Max(-ACT) 
(r=5) 

Instant 
(main) -1.85 0.79 -1.65 0.88 

Speed (Km/h) Instant 110.99 19.04 13.43 13.10 
Acceleration 
(m/ss) Instant 0.17 1.02 -4.79 2.97 

D2R (m) Instant 245.70 180.26 276.68 284.87 
DPC (m) Instant -45.67 8.76 39.62 26.07 
DRAC (m/ss) Instant 2.50 9.77 6.55 12.04 
Acceleration 
Noise (m/ss) MLCS 0.79 0.52 3.30 0.53 

TE-ACT (s) MLCS 0.86 0.64 1.83 1.25 
DR (m) Scenario 556.60 159.94 468.06 165.15 

For both models, three out of five coefficients share the 
same sign: D2R, DRAC, and TE-ACT. The D2R coefficient is 
negative, indicating that a decrease in the D2R shifts the GEV 
distribution to the right, enlarges the area greater than 0, and 
exacerbates the crash risk. This finding is consistent with 
existing studies[14, 24, 32]. A possible explanation is that as 
the D2R diminished, drivers' motivation to bypass the platoon 
and enter the ramp strengthened, leading to more intense 



  

maneuvers, and thereby increasing driving risk. A higher 
DRAC value is associated with a higher crash risk, which is 
consistent with previous studies[33, 34]. It's worth noting that 
the DRAC coefficient for the PBE model is larger than that for 
the PFO model. This possibly because the main risk of PEB is 
from the rear vehicle, which is more sensitive to DRAC. In our 
model, this coefficient of TE-ACT is positive, implying that 
prolonged exposure to the hazardous condition during the 
mandatory lane change increases the location parameter and 
thus, the crash risk. 

The speed variable coefficients display contrasting signs 
for the two models. Within the context of PBE, a negative sign 
for the speed coefficient suggests that lower speeds correspond 
to a higher location parameter, thus indicating an increased 
crash risk. This aligns with intuition as a slower MV choosing 
to decelerate during the implies a shorter ACT with the Rear 
Vehicle (RV). Concerning PFO, the problem becomes two-
dimensional, entailing both speed and the angle between two 
vehicles. Consequently, direct positive sign determination 
proves difficult. Nevertheless, several studies on MLCS [24, 
25] concur that higher speed correlates with increased crash 
risk. Lastly, DPC coefficients also exhibit contrary signs. For 
PFO, an increase in DPC aligns with an increased location 
parameter, suggesting that as the distance from the center of 
the HTP grows, the likelihood of extreme ACT occurrences 
and thus driving risk, increases. Conversely, for PBE, a 
smaller DPC means a higher location parameter, signifying 
that proximity to the center of the platoon increases the 
potential for hazardous ACTs and thereby elevates driving risk. 
This may be related to the evading target of the MV. For PFO, 
MV needs to overtake the head of the HTP and for PBE, MV 
needs to evade the tail of the HTP. Longer distance between 
the MV and the evading targe increases the crash risk. 

TABLE III.  THE PARAMETERS OF THE PFO AND PBE MODELS 

Model Location µ Scale 
𝝈 

Shape 
x 𝝁𝟎 𝝁𝑫𝟐𝑹 𝝁𝒔𝒑𝒆𝒆𝒅 𝝁𝑫𝑷𝑪 𝝁𝑫𝑹𝑨𝑪 𝝁𝑻𝑬.𝑨𝑪𝑻 

PFO -4.18 -0.0003 0.03 0.0004 0.003 1.37 0.11 0.90 
PBE -1.73 -0.0001 -0.11 -0.0014 0.014 0.140 0.07 1.06 

B. Scenario Crash Risk Analysis 
In the experimental design, the only changing variables 

among different scenarios is DR, short (300m, 400m), medium 
(500m, 600m), long (700m, 800m). The estimated crash risk 
for each scenario was calculated by employing the mean value 
(in TABLE IV) of the covariates in each specific context.  

TABLE IV.  THE MEAN VALUE OF VARIABLES IN THE FINAL MODELS 

Variables Short Scenario Medium Scenario Long Scenario 
PFO PBE PFO PBE PFO PBE 

Max(-ACT) (s) -1.23 -1.33 -2.01 -2.16 -2.22 -1.87 
Speed (km/h) 95.33 10.99 120.02 19.40 112.75 9.97 
Acceleration 
(m/s2) 

-0.81 -3.79 -0.51 -5.55 0.62 -6.50 

D2R (m) 77.18 175.32 191.87 501.19 496.78 270.80 
DPC (m) -41.70 44.33 -46.02 42.08 -36.01 42.20 
DRAC (m/s2) 8.28 9.61 0.25 2.53 0.17 3.42 
TE-ACT (s) 1.27 2.24 0.66 1.19 0.77 1.53 

For PFO, the crash risk in the three scenarios are as follows: 
0.051 in the short scenario, 0.036 in the medium scenario, and 
0.035 in the long scenario. An evident trend emerges where 

the crash risk diminishes as the DR increases, particularly 
transitioning from short to medium scenarios. This observation 
underscores that extending the critical DR can significantly 
mitigate crash risk. As for PBE, the crash risks across 
scenarios are 0.044 (short), 0.035 (medium), and 0.041 (long). 
Although we cannot conclude that an increase in DR 
effectively decrease the crash risk, when the DR shift from 
short to any other scenario, the crash risk decreases. Both 
results of PFO and PBE highlights the importance to reduce 
risk by providing HDV a relatively large DR value. 

Furthermore, the comparison of the EMCs in the same 
scenario are shown in Figure 4. it’s noteworthy that in the 
short scenario, the crash risk for PFO is higher, while in the 
medium scenario, the crash risk for both ACPs is roughly 
equal. Interestingly, the long scenario sees PBE as the riskier 
behavior. This counter-intuitive result could potentially be 
attributed to the driver's ability to switch evasion maneuvers. 
With a longer DR, drivers have additional time to select their 
EMCs. However, some drivers might initially opt for PFO, 
but due to insufficient acceleration or the prolonged nature of 
the process, they may realize that the D2R could become 
inadequate. Consequently, they switch to PBE. This extended 
process of changing strategies may inadvertently increase the 
associated risk, leading to the heightened crash risk observed 
in the long scenario for PBE. 

In the short scenario, overtaking the HTP to access the off-
ramp posed a high risk, with several drivers displaying serious 
traffic violations (such as speeding or crossing a solid line to 
enter the ramp). However, as the DR lengthened (long 
scenario), the act of overtaking became markedly less 
hazardous. Similar patterns were noted for PBE. In addition, 
during the experiments, some drivers obstructed from seeing 
the off-ramp by the HTP would execute sharp deceleration 
maneuvers even when sufficient distance for a smoother 
slowdown was available. 

One of the most direct implications of these findings is the 
regulation of evasion maneuver choices based on the distance 
to the ramp (D2R). For instance, in situations similar to the 
study, a platoon front overtaking is not permitted when the 
D2R is short (e.g., < 400 m). 
 

 
Figure 4.  Crash risk of PFO and PBE in different scenarios. 
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