
  

  

Abstract— Incorporating individual user preferences in 

statewide transportation planning is of great importance 

regarding revenue management and behavioral equity. However, 

an enduring challenge is that consistent population travel data 

remains scarce, particularly in underserved and rural areas. 

Moreover, large-scale optimization models are computationally 

demanding when considering stochastic travel demands in a 

discrete choice model (DCM) framework. These can be 

addressed with a combination of synthetic population data and 

deterministic taste coefficients. We formulate a choice-based 

optimization model, in which the mode share in each block 

group-level trip origin-destination (OD) is determined by a set of 

deterministic coefficients reflecting user preferences. In that 

case, statewide service region design becomes an assortment 

optimization problem with known parameters and linear 

constraints, which can be efficiently solved through linear or 

quadratic programming (depending on variant). We test the 

method using a hypothetical new mobility service considered for 

New York State. The proposed model is applied to optimize its 

service region with one of the three objectives: (1) maximizing 

the total revenue; (2) maximizing the total change of consumer 

surplus; (3) minimizing the disparity between disadvantaged 

and non-disadvantaged communities.   

I. INTRODUCTION 

Transportation policies, plans, and projects require the 
support of mathematical models due to the substantial cost of 
infrastructure and the need to assess system performance [1]. 
There are many studies that formulated optimization models 
to support transportation planning, which aims to improve 
service efficiency [2], collect revenue [3], or capture 
behavioral equity [4]. At the large scale, statewide 
transportation models are crucial to analyze the impact of 
policies and trends that are implemented or addressed by state 
governments, but not captured at a local city or community 
level [5].  

However, an enduring challenge in incorporating user 
preferences into statewide models is that consistent population 
travel data remains scarce, particularly for underserved and 
rural communities. Models are estimated using survey data 
collected by metropolitan planning organizations (MPOs) for 
urban areas, not for rural communities. The lack of 
representative data at the state level can lead to the ignorance 
of specific user groups and exacerbations of social inequity [6]. 
Moreover, though user preferences can be captured by the 
DCMs, their stochastic properties result in nonlinear or 
nonconvex demand functions, which are difficult to embed in 
large-scale optimization models governing the supply-related 
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decisions [7-9]. Whereas Pacheco et al. [10] have presented 
the feasibility of integrating mixed logit models into mixed-
integer linear programming (MILP) models via a simulation-
based linearization approach, longer computational time 
compared with conventional MILP still hinders its application 
to large transportation network. 

These issues can be addressed with a combination of 
synthetic population data and deterministic user preferences 
estimated within a DCM framework. On the one side, a 
growing number of companies and institutions have 
synthetized trip details for total population by integrating 
large-scale information and communication technology (ICT) 
data [11-12]. For instance, Replica Inc. (2021) has developed 
a nationwide synthetic population dataset that includes both 
sociodemographic information and trip details [13]. With this 
unique data opportunity, it is now possible to develop choice 
models that can account for travelers in underserved areas. On 
the other side, the availability of large datasets has induced the 
development of individual parameter logit (IPL) models, 
which estimate unique sets of taste coefficients per individual 
or agent [14-15]. In that case, the derivation of travel demands 
can be deterministic (a summation of individual/agent choices) 
instead of stochastic (an integral of parametric distribution). 

This paper formulates a choice-based optimization model 
for statewide mobility service region design. The mode share 
in each block group-level trip OD pair is determined by a set 
of coefficients deterministically estimated by an agent-based 
mixed logit (AMXL) model [9]. We show that given one or 
two new mobility services, the statewide service region design 
can be formulated as an assortment optimization problem in 
which the mobility providers pick regions and OD pairs to 
serve according to the mode choice decisions made by 
travelers. In an empirical study, we apply the proposed model 
to New York State. The synthetic population data is provided 
by Replica Inc. The block group-level mode choice 
coefficients are retrieved from a public dataset owned by 
C2SMART center [16]. We illustrate the method with a 
hypothetical new mobility service in New York State to show 
how we would optimize its service region regarding the total 
revenue and equity impacts. 

The remainder of the paper is organized as follows: Section 
II introduces the proposed model in detail, including its 
theoretical structure and programming formulation. Section III 
gives the results of the empirical study and the analysis of 
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optimization results. Section IV draws some conclusions and 
makes some discussions for future work. 

 

II. SERVICE REGION ASSORTMENT MODEL 

A. Choice-based optimization with deterministic coefficients 

Choice-based optimization typically anticipates 
individuals’ (or agents’) choice behavior with a DCM 
following random utility theory. We refer interested readers to 
[17-18]. The basic assumption is that individuals or agents 
make choices by maximizing their overall utility that consists 
of a deterministic part and a random part. McFadden and Train 
(2000) defined a general framework that includes any DCM 
with the assumption of Gumbel distributed random utility [19]. 
They called this mixed logit (MXL), which is a multinomial 
logit (MNL) model with stochastic coefficients 𝜃 drawn from 
a cumulative distribution function. 

In the context of this paper, the utility function of choosing 
mode 𝑘 to travel from node 𝑢 to 𝑤 is defined in Eq. (1): 

𝑈𝑢𝑤
𝑘 = 𝑉𝑢𝑤

𝑘 + 𝜀𝑢𝑤
𝑘 = 𝜃𝑢𝑤𝑋𝑢𝑤

𝑘 + 𝜀𝑢𝑤
𝑘  (1) 

where 𝑉𝑢𝑤
𝑘  is the deterministic utility that is determined by a 

vector of trip attributes 𝑋𝑢𝑤
𝑘  and a vector of taste coefficients 

𝜃𝑢𝑤 ; 𝜀𝑢𝑤
𝑘  is the random utility usually assumed to be 

independent and identically distributed (i.i.d.). According to 
[19], the total demand for trip mode 𝑘 is defined in Eqs. (2)-
(4): 

𝐷𝑘 = ∑ ∑ 𝑑𝑢𝑤
𝑘

𝑤∈𝑁𝑢∈𝑁

, ∀𝑘 ∈ 𝐾− 𝑜𝑟 𝐾+ (2) 

𝑑𝑢𝑤
𝑘 = 𝑑𝑢𝑤 . 𝑃𝑢𝑤(𝑘|𝑋𝑢𝑤

𝑘 , 𝜃), ∀𝑘 ∈ 𝐾− 𝑜𝑟 𝐾+ (3) 

𝑃𝑢𝑤(𝑘|𝑋𝑢𝑤
𝑘 , 𝜃) = ∫

𝑒𝑋𝑢𝑤
𝑘 .𝜃

∑ 𝑒𝑋𝑢𝑤
𝑘′ .𝜃

𝑘′∈𝐾

. 𝑔(𝜃|) 𝑑𝜃 (4) 

where 𝐾 is the choice set of trip modes; 𝑑𝑢𝑤
𝑘  is the demand for 

mode 𝑘 for OD 𝑢𝑤; 𝑑𝑢𝑤 is the total travel demand for OD 𝑢𝑤 
assumed to be fixed (won’t change with the choice set) and 
can be observed from travel data; 𝑃𝑢𝑤(𝑘|𝑋𝑢𝑤

𝑘 , 𝜃)  is the 

probability of choosing mode 𝑘 given trip attributes 𝑋𝑢𝑤
𝑘  and 

taste coefficients 𝜃 . The taste coefficients 𝜃  vary across 
individuals or agents (in MXL) according to a probability 
distribution function 𝑔(. )  with distribution parameters 
included in   (e.g., means and covariance of Gaussian 
distribution). 

Incorporating Equation (4) into optimization models is 
computationally demanding. A more efficient way is to 
estimate a set of coefficients, 𝜃𝑢𝑤, for each OD pair within a 
DCM framework. In that case, the integral of the parametric 
distribution can be replaced by the summation of OD pair-
level mode shares, as shown in Eq. (5): 

𝐷𝑘 = ∑ ∑ 𝑑𝑢𝑤 .
𝑒𝑋𝑢𝑤

𝑘 .𝜃𝑢𝑤

∑ 𝑒𝑋𝑢𝑤
𝑘′

.𝜃𝑢𝑤
𝑘′∈𝐾

, ∀𝑘 ∈ 𝐾

𝑤∈𝑁𝑢∈𝑁

 (5) 

where 𝜃𝑢𝑤  can be estimated through various approaches, 
including linear regression, evolutionary plus gradient-based 

algorithm, and inverse optimization. We refer interested 
readers to [9,14,15]. 

In this paper, 𝑋𝑢𝑤 , 𝑑𝑢𝑤  and 𝜃𝑢𝑤  are assumed to be 
deterministic values (treated as inputs in the optimization 
model), where 𝜃𝑢𝑤 varies for each OD pair. Since the demand 
can be directly calculated, determining whether mode service 
𝑘 should be available for OD 𝑢𝑤 can be formulated as a linear 
knapsack problem or assortment problem with efficient 
algorithms to solve on a large scale [20].  

B. Parameters and Decision Variables 

The proposed model for service region optimization 
assumes that there will be new mobility services selecting 
operating zones and OD pairs, in which the fleet size should 
be decided to provide bi-direction trip services to meet the 
demands on the operated OD pairs. Each vehicle has a 
maximum service distance and a maximum number of trips per 
day. Under this setting, parameters in the proposed model 
consist of three parts:  

• Trip attributes observed from synthetic population data. 

• Deterministic taste coefficients estimated within the DCM 
framework. 

• Variables defining the budget and performance of the new 
mobility services. 

For a single mobility service, the single-service region 
design problem can be formulated as a linear programming 
(LP) problem. Table I lists the parameters and decision 
variables used in our model. It is noted that our model can also 
deal with multi-service region design. In that case, the problem 
is formulated as a quadratic programming (QP) problem with 
modifications on the decision variables. We refer interested 
readers to the Appendix. 

TABLE I.  NOTATIONS USED IN THE PROPOSED MODEL 

Trip attributes observed from synthetic population data 

𝑍 The set of counties in New York state 

𝑁 The set of block groups in New York state  

𝑁𝑖 The set of block groups in county 𝑖𝑍 

𝐾− The mode choice set without the new mobility service 

𝐾+ The mode choice set with the new mobility service 

𝑋𝑢𝑤
𝑘  

A vector of trip attributes (including average travel time, 
average monetary cost, and mode constant) from block 
group 𝑢𝑁 to 𝑤𝑁 using mode k 

𝑑𝑢𝑤 
Travel demand (trips/day) on the OD pair from block 
group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝑙𝑢𝑤 Trip length (km) from block group 𝑢𝑁 and 𝑤𝑁, 𝑢 ≠ 𝑤 

Deterministic taste coefficients estimated within the DCM framework  

𝜃𝑢𝑤 
A vector of mode choice coefficients for trips from block 
group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝑉𝑢𝑤
𝑘  

The deterministic utility of traveling from block group 
𝑢𝑁 to 𝑤𝑁 using mode k 

𝑑𝑢𝑤
𝑘  

The estimated demand (trips/day) of mode 𝑘 on the OD 
pair from block group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝑠𝑢𝑤
𝐾  

Consumer surplus of traveling from block group 𝑢𝑁 to 
𝑤𝑁, 𝑢 ≠ 𝑤, given the mode choice set 𝐾 

Variables defining the new mobility services 

𝑂 The maximum number of operating zones 

ℱ𝑚𝑎𝑥 The maximum fleet size in total (vehicles/day) 



  

𝐹𝑚𝑎𝑥 ,  
𝐹𝑚𝑖𝑛 

The maximum and minimum fleet size in each operating 
zone (vehicles/day) 

𝑡𝑢𝑤
�̂�  

Trip duration (minutes) of the new mobility service on the 
OD pair from block group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝑐𝑢𝑤
�̂�  

Trip fee ($/trip) of the new mobility service on the OD pair 
from block group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝐿 The maximum distance (km) a vehicle can serve per day 

𝑇 The maximum number of trips a vehicle can serve per day 

Decision variables (single-service region design) 

𝑦𝑖 
A binary variable that indicates whether county 𝑖𝑍  is 
included into the service region  

𝑥𝑢𝑤 
A binary variable that indicates whether the OD pair from 
block group 𝑢𝑁 to 𝑤𝑁 is operated 

𝑓𝑢𝑤 
The fleet size (vehicles/day) on the OD pair from block 
group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

C. Objective function 

We considered three objectives of the new mobility service 
from the perspective of different stakeholder groups: (1) 
maximizing total revenue, which is a typical objective of 
Transportation Network Companies (TNCs); (2) maximizing 
the total change of consumer surplus, which is a typical 
objective of state governments aiming to improve the overall 
social welfare; (3) minimizing the disparities between 
disadvantaged and non-disadvantaged communities, which is 
a typical objective of NGOs focusing on disadvantaged 
communities. We set these objectives to provide optimal 
strategies for these stakeholders, as well as compare the 
difference of their aims in space. 

The consumer surplus of traveling of OD 𝑢𝑤 given mode 
choice set 𝐾, 𝑠𝑢𝑤

𝐾 , is defined as a log-sum of the utilities that 
is shown in Eq. (6): 

𝑠𝑢𝑤
𝐾 = ln (∑ 𝑒𝑋𝑢𝑤

𝑘 .𝜃𝑢𝑤

𝑘∈𝐾

) , ∀𝑢, 𝑤 ∈ 𝑁, 𝑢 ≠ 𝑤 (6) 

For the single-service region design problem, three 
objective functions according to the objectives above is 
defined in Eqs. (7)-(9): 

max
𝑦𝑖,𝑥𝑢𝑤,𝑓𝑢𝑤

∑ ∑ 𝑐𝑢𝑤
�̂� 𝑑𝑢𝑤

�̂� 𝑥𝑢𝑤

𝑤∈𝑁𝑢∈𝑁

 (7) 

max
𝑦𝑖,𝑥𝑢𝑤,𝑓𝑢𝑤

 ∑ ∑ (𝑠𝑢𝑤
𝐾+

− 𝑠𝑢𝑤
𝐾−

)𝑑𝑢𝑤𝑥𝑢𝑤

𝑤∈𝑁𝑢∈𝑁

 (8) 

min
𝑦𝑖,𝑥𝑢𝑤,𝑓𝑢𝑤

∑ ∑ (𝑠𝑢𝑤
𝐾+

− 𝑠𝑢𝑤
𝐾−

)𝑑𝑢𝑤𝑥𝑢𝑤

𝑤∈𝑁𝑢∈𝑁𝑛𝑜𝑛_𝑑𝑖𝑠

− ∑ ∑ (𝑠𝑢𝑤
𝐾+

− 𝑠𝑢𝑤
𝐾−

)𝑑𝑢𝑤𝑥𝑢𝑤

𝑤∈𝑁𝑢∈𝑁𝑑𝑖𝑠

 
(9) 

where 𝑦𝑖 , 𝑥𝑢𝑤 , 𝑓𝑢𝑤  are decision variables indicating whether 
county 𝑖 is included into the service region, whether OD 𝑢𝑤 is 

operated, and the fleet size serving OD 𝑢𝑤 . 𝑑𝑢𝑤  and 𝑑𝑢𝑤
�̂�  

denote the total demand and demand for the new mobility 

service for OD 𝑢𝑤 . 𝑐𝑢𝑤
�̂�  denotes the trip fare of the new 

mobility service for OD 𝑢𝑤 . 𝑁𝑑𝑖𝑠  denotes the set of block 
groups that are identified as disadvantaged communities by 

NYSERDA (2021) [21]. 𝑁𝑛𝑜𝑛_𝑑𝑖𝑠  denotes the set of block 
groups that are identified as non-disadvantaged communities. 

𝑠𝑢𝑤
𝐾+

 and 𝑠𝑢𝑤
𝐾−

 denote the social welfare (or consumer surplus) 

with and without the new mobility service, as defined in Eq. 
(6), in which 𝑉𝑢𝑤

𝑘  denotes the utility of traveling from block 
group 𝑢𝑁  to 𝑤𝑁  using mode k. The objective functions 
for multi-service region assortment problem can be found in 
the Appendix.  

D. Constraints 

Eqs. (10) - (20) are constraints of the single-service region 
design problem regarding total budget and network 
characteristics. Eqs. (10) - (11) ensure the number of service 
zones and vehicle fleet size are restricted by the total budget. 
Eqs. (12) - (13) ensure only OD pairs within the service zones 
can be operated and vehicles can only be assigned to operating 
OD pairs, in which 𝑀 is a large positive integer. Eqs. (14) - 
(15) ensure a maximum and minimum fleet size in each service 
zone. Eq. (16) ensures a bi-direction trip of the new mobility 
service. Eqs. (17) - (18) ensure that the travel demand for an 
operating OD pair should be met within the maximum distance 
and number of trips per vehicle. Eqs. (19) - (20) define the 
types of decision variables. 

∑ 𝑦𝑖

𝑖∈𝑍

≤ 𝑂 (10) 

∑ ∑ 𝑓𝑢𝑤 ≤ ℱ𝑚𝑎𝑥, 𝑢 ≠ 𝑤

𝑤∈𝑁𝑢∈𝑁

 (11) 

∑ ∑ 𝑥𝑢𝑤 ≤ 𝑀𝑦𝑖 , ∀𝑖𝑍, 𝑢 ≠ 𝑤  

𝑤∈𝑁𝑖𝑢∈𝑁𝑖

 (12) 

𝑓𝑢𝑤 ≤ 𝑀𝑥𝑢𝑤 , ∀𝑢, 𝑤𝑁, 𝑢 ≠ 𝑤 (13) 

∑ ∑ 𝑓𝑢𝑤 ≤ 𝐹𝑚𝑎𝑥𝑦𝑖 , ∀𝑖𝑍, 𝑢 ≠ 𝑤  

𝑤∈𝑁𝑖𝑢∈𝑁𝑖

 (14) 

∑ ∑ 𝑓𝑢𝑤 ≥ 𝐹𝑚𝑖𝑛𝑦𝑖 , ∀𝑖𝑍, 𝑢 ≠ 𝑤  

𝑤∈𝑁𝑖𝑢∈𝑁𝑖

 (15) 

𝑓𝑢𝑤 = 𝑓𝑤𝑢, ∀𝑢, 𝑤𝑁, 𝑢 ≠ 𝑤 (16) 

𝐿𝑓𝑢𝑤 ≥ 𝑑𝑢𝑤
�̂� 𝑙𝑢𝑤𝑥𝑢𝑤, ∀𝑢, 𝑤𝑁, 𝑢 ≠ 𝑤 (17) 

𝑇𝑓𝑢𝑤 ≥ 𝑑𝑢𝑤
�̂� 𝑥𝑢𝑤, ∀𝑢, 𝑤𝑁, 𝑢 ≠ 𝑤 (18) 

𝑦𝑖 , 𝑥𝑢𝑤 {0,1} (19) 

𝑓𝑢𝑤 𝑍+ (20) 

 

III. CASE STUDY 

In this section, we apply the proposed model to New York 
State. We assume there will be a new mobility service 
selecting counties and block-group OD pairs as service regions, 
as well as deciding the fleet size for each OD pair. 𝑋𝑢𝑤

𝑘 , 𝑑𝑢𝑤 
are retrieved from Replica’s synthetic population data. 𝜃𝑢𝑤 are 
retrieved from a public dataset owned by C2SMART center. 
The model is solved with a Gurobi package in Python, which 
takes 5-8 min for each service region optimization on a local 
machine with Intel (R) Core (TM) i7-10875H CPU and 32GB 
installed RAM.  



  

A. Data Collection 

Replica Inc. developed a nationwide synthetic population 
dataset that includes both sociodemographic information and 
trip details (see Fig. 1). Since it is infeasible to build DCMs 
with such a large dataset (e.g., the maximum sample size for a 
mixed logit model to converge on a local machine is round 100 
thousand choice observations), we retrieved an aggregated 
dataset for New York state that contains 120,740 rows in total. 
Each row contains the mode choice information of a block-
group level trip OD, including the block group ID of the origin 
and destination, number of trips per day along an OD pair, 
average travel time by each mode, average monetary cost by 
each mode, and the current mode share.  

 

Figure 1.  Replica’s synthetic population data platfrom    

source: https://www.replicahq.com/  

Taste coefficients, 𝜃𝑢𝑤, are retrieved from a public dataset 
generated by one of the research projects in C2SMART center. 
These coefficients were estimated within the group level 
agent-based mixed (GLAM) logit framework using Replica’s 
data. These coefficients follow an empirical distribution 
revealing to be neither Gumber nor Gaussian, which captures 
taste heterogeneity to a great extent. We refer interested 
readers to [22].  

Six trip modes are considered, including private auto, 
public transit, on-demand auto, biking, walking, and carpool. 
For each block-group level OD as an agent, the vector 𝜃𝑢𝑤 
contains ten values, including the coefficients of travel time 

for auto (𝜃𝑢𝑤
𝑎𝑢𝑡𝑜_𝑡𝑡

), in-vehicle-time for public transit (𝜃𝑢𝑤
𝑡𝑟𝑎𝑛𝑠_𝑡𝑡

), 

access time for public transit (𝜃𝑢𝑤
𝑡𝑟𝑎𝑛𝑠_𝑎𝑡

), egress time for public 

transit ( 𝜃𝑢𝑤
𝑡𝑟𝑎𝑛𝑠_𝑒𝑡

), number of transfers for public transit 

(𝜃𝑢𝑤
𝑡𝑟𝑎𝑛𝑠_𝑛

), travel time for non-vehicle (𝜃𝑢𝑤
𝑛𝑜𝑛_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑡𝑡

), trip 

monetary cost (𝜃𝑢𝑤
𝑐𝑜𝑠𝑡 ), mode constant for auto (𝜃𝑢𝑤

𝑎𝑠𝑐_𝑎𝑢𝑡𝑜
), 

mode constant for public transit ( 𝜃𝑢𝑤
𝑎𝑠𝑐_𝑡𝑟𝑎𝑛𝑠

), and mode 

constant for non-vehicle (𝜃𝑢𝑤
𝑎𝑠𝑐_𝑛𝑜𝑛_𝑣𝑒ℎ𝑖𝑐𝑙𝑒

). Figure 2 shows the 
distribution of travelers’ value of time (VOT), from which we 
find that the VOT in NYC is generally higher than other areas 
in NY state, and that within NYC, trips related to Manhattan 
and trips pointing to JFK airport have relatively higher value 
of time. These are consistent with our empirical knowledge.  

 

Figure 2.  Travelers’ value of time (VOT) at block-group OD level  

B. Pre-settings and Performance Metrics 

The budget level and service characteristics should be 
defined before running the optimization model. The values of 
these parameters are listed in Table II. The trip fare of the new 
mobility service is set to half of the on-demand mode, and the 
trip duration of the mobility service is set to the trip duration 
of on-demand mode plus a five-minute waiting time. We use 
relative trip fare and duration for simplicity, while price level 
and performance can also be defined using functions. Three 
budget levels are considered, including: (1) 𝑂 = 5, ℱ𝑚𝑎𝑥 =
2,000; (2) 𝑂 = 10, ℱ𝑚𝑎𝑥 = 5,000, and; (3) 𝑂 = 10, ℱ𝑚𝑎𝑥 =
10,000. 

TABLE II.  VARIABLES DEFINING THE NEW MOBILITY SERVICE 

Variable Explanation Value in this paper 

𝑂 
The maximum number of 
operating zones 

[5, 10] 

ℱ𝑚𝑎𝑥 
The maximum fleet size in total 
(vehicles/day) 

[2000, 5000, 10000] 

𝐹𝑚𝑎𝑥 ,  
 

The maximum fleet size in each 
operating zone  

Default to 2ℱ𝑚𝑎𝑥/𝑂 

𝐹𝑚𝑖𝑛 
The minimum fleet size in each 
operating zone  

Default to ℱ𝑚𝑎𝑥/2𝑂 

𝑡𝑢𝑤
�̂�  

Trip duration (min) of the new 
mobility service on the OD pair 

Default to on-demand 

travel time plus a 

five- minute waiting 

time 

𝑐𝑢𝑤
�̂�  

Trip fee ($/trip) of the new 
mobility service on the OD pair  

Default to half of the 

on-demand mode 

𝐿 
The maximum distance 
(km/day) a vehicle can serve  

Default to 200 km per 

day 

𝑇 
The maximum number of trips 
a vehicle can serve per day 

Default to 10 trips 
per day 

 

We consider several metrics when comparing the 
optimization results, including the number of operating OD 
pairs, vehicle kilometer traveled per vehicle (km/day), total 
revenue (objective 1, $/day), average welfare (objective 2, 
measured as total change of consumer surplus), and welfare 
disparity (objective 3, measured as change in consumer 
surplus in disadvantaged communities minus that in non-
disadvantaged communities). 

C. Optimization Results 

The model is solved with Gurobi package in Python, which 
takes 5-8 min for each service region optimization on a local 
machine with Intel (R) Core (TM) i7-10875H CPU and 32GB 
installed RAM. Table III compares the performance metrics of 
single-service region optimization under different objectives 
and budge levels, in which the baseline refers to the current 
states observed from Replica’s data. Each entry represents the 
value of a metric, and the number in the parenthesis is the 
percentage change compared to baseline (without any new 
mobility services). Several interesting points were found. 

• Entries in bold font indicate the extreme values found for 
each metric across the three different objectives. 

• The percentage change of the metrics is relatively small, 
though most of them have the expected signs. This is 
because the new mobility service can only impact a small 
part of the total trips (only 2.5% given budget level C). 

• Maximizing total revenue and maximizing total welfare 
will increase welfare disparity by up to 0.59%, and 

https://www.replicahq.com/


  

revenue per vehicle decreases with the increase of 
maximum fleet size (particularly from 5,000 to 10,000). 

• Minimizing welfare disparity helps to decrease 
transportation inequities by up to 7.37%, though this is at 
the cost of losing total revenue. Moreover, its service 
region includes more OD pairs and smaller VKT per 
vehicle (targeting at underserved or rural block groups). 

 

TABLE III.  METRICS OF THE OPTIMIZATION RESULTS 

 Baesline Obj. 1 Obj. 2 Obj. 3 

A. 5 zones, 2,000 vehicles 

Num. OD pairs -- 694 1,387 1,492 

VKT/vehicle (km) -- 63 57 33 

Total revenue ($) -- 148,635 136,442 73,223 

Average welfare 5.443 
5.452 

(+0.16%) 

5.454 

(+0.19%) 

5.446 

(+0.04%) 

Welfare disparity 0.482 
0.483 

(+0.02%) 

0.484 

(+0.37%) 

0.471 

(-2.48%) 

B. 10 zones, 5,000 vehicles 

Num. OD pairs -- 2,503 3,445 3,439 

VKT/vehicle (km) -- 62 53 33 

Total revenue ($) -- 350,623 308,357 171,805 

Average welfare 5.443 
5.460 

(+0.29%) 

5.462 

(+0.33%) 

5.449 

(+0.10%) 

Welfare disparity 0.482 
0.483 

(+0.06%) 

0.484 

(+0.38%) 

0.459 

(-4.84%) 

C. 10 zones, 10,000 vehicles 

Num. OD pairs -- 6,151 7,050 5,202 

VKT/vehicle (km) -- 55 46 28 

Total revenue ($) -- 593,845 538,666 237,878 

Average welfare 5.443 
5.470 

(+0.49%) 

5.476 

(+0.59%) 

5.452 

(+0.14%) 

Welfare disparity 0.482 
0.485 

(+0.40%) 

0.486 

(+0.59%) 

0.447 

(-7.37%) 

 

Table IV lists the optimal service region given different 
scenarios, in which each figure is a snapshot of the online maps 
visualizing operated OD pairs and served counties (for larger 
images please click the OD pairs under each figure). We find 
that optimal service region under objective 3 is different from 
objective 1&2, by covering more OD pairs and counties in 
rural areas. 

TABLE IV.  VISUALIATION OF OPTIMAL SERVICE REGION 

A. 5 zones, 2,000 vehicles 

 
Objective 1 (online map) 

 
Objective 2 (online map) 

 
Objective3 (online map) 

 

B. 10 zones, 5,000 vehicles 

 
Objective 1 (online map) 

 
Objective 2 (online map) 

 
Objective 3 (online map) 

 

C. 10 zones, 10,000 vehicles 

 
Objective 1 (online map) 

 
Objective 2 (online map) 

 
Objective 3 (online map) 

 

 

IV. DISCUSSION AND CONCLUSION 

A statewide transportation model considering user 
preferences can play a critical role in improving collected 
revenue and behavioral equity by providing state policymakers 
with a comprehensive, data-driven and transparent approach. 
This paper shows the feasibility of formulating a choice-based 
optimization model for mobility service region design. The 
challenges of incorporating user preferences in large-scale 
models are addressed by combining (1) synthetic population 
datasets that contain trips in underserved areas and (2) 
deterministic taste coefficients estimated within the AMXL 
framework. 

https://xr2006.github.io/sample/Replica_project/single_service/Objective1_5_2000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective2_5_2000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective3_5_2000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective1_10_5000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective2_10_5000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective3_10_5000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective1_10_10000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective2_10_10000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective3_10_10000.html


  

The proposed optimization model takes 𝑋𝑢𝑤
𝑘 , 𝑑𝑢𝑤 , and 

𝜃𝑢𝑤 as inputs, and outputs optimal service region including the 
service zones (𝑦𝑖), operating OD pairs (𝑥𝑢𝑤), and fleet size per 
OD pair (𝑓𝑢𝑤). The single-service region design takes only 
several minutes to be solved on a local machine, which can 
serve as an efficient tool for statewide mobility service 
providers regarding total revenue or transportation equity.  

There are many new research opportunities and use cases 
to be addressed. Though the performance and cost of the new 

mobility service is defined by a set of values (𝑋𝑢𝑤
�̂� ), they can 

be replaced by cost or performance functions in response to 
travel demands. This won’t increase the model complexity as 
long as travel demands can be directly computed using 
deterministic coefficients. However, an essential assumption 
in this study is that the total travel demand on each OD pair 

(𝑑𝑢𝑤) and performance of other modes (𝑋𝑢𝑤
𝑘 , 𝑘 ≠ �̂�) are fixed, 

i.e., insensitive to the new mobility service. This assumption 
is common in choice-based optimization studies but does not 
hold in every case. It requires further study in the future. 

APPENDIX 

TABLE V.  NOTATIONS FOR MULTI-SERVICE REGION ASSORTMENT 

Decision variables (multi-service region assortment) 

𝑦𝑖 
A binary variable that indicates whether county 𝑖𝑍  is 

included into the service region of service A and B 

𝑥𝑢𝑤
𝐴 , 𝑥𝑢𝑤

𝐵  

Binary variables that indicate whether the OD pair from block 

group 𝑢𝑁  to 𝑤𝑁  is operated by service A and B, 

respectively 

𝑓𝑢𝑤
𝐴 , 𝑓𝑢𝑤

𝐴  
The fleet size (vehicles/day) of service A and B on OD pair 

from block group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

 

To showcase how to formulate the multi-service region 

assortment as a QP problem, Eqs. (A1)-(A4) are formulated 

to define the objective function of maximizing total revenue: 

 max
𝑦𝑖,…,𝑓𝑢𝑤

𝐵
∑ ∑ 𝑐𝑢𝑤

𝐴 𝑑𝑢𝑤
𝐴

𝑤∈𝑁𝑢∈𝑁

+ ∑ ∑ 𝑐𝑢𝑤
𝐵 𝑑𝑢𝑤

𝐵

𝑤∈𝑁𝑢∈𝑁

 (A1) 

 𝑑𝑢𝑤
𝐴 = 𝑑𝑢𝑤

𝐴_𝐴𝑥𝑢𝑤
𝐴 (1 − 𝑥𝑢𝑤

𝐵 ) + 𝑑𝑢𝑤
𝐴_𝐴𝐵𝑥𝑢𝑤

𝐴 𝑥𝑢𝑤
𝐵  (A2) 

 𝑑𝑢𝑤
𝐴_𝐴 =

𝑒𝑉𝑢𝑤
𝐴

∑ 𝑒𝑉𝑢𝑤
𝑘|𝐾−|

𝑘=1 + 𝑒𝑉𝑢𝑤
𝐴

 (A3) 

 𝑑𝑢𝑤
𝐴_𝐴𝐵 =

𝑒𝑉𝑢𝑤
𝐴

∑ 𝑒𝑉𝑢𝑤
𝑘|𝐾−|

𝑘=1 + 𝑒𝑉𝑢𝑤
𝐴

+ 𝑒𝑉𝑢𝑤
𝐵

 (A4) 

where the demand of service A on OD pair 𝑢𝑤 is defined as 

a combination of possible demands and the decision variables. 

Eq. (A2) ensures that if 𝑥𝑢𝑤
𝐴 = 0, then 𝑑𝑢𝑤

𝐴 = 0, and if 𝑥𝑢𝑤
𝐴 =

0, 𝑥𝑢𝑤
𝐵 = 1, then 𝑑𝑢𝑤

𝐴 = 𝑑𝑢𝑤
𝐴_𝐴𝐵

. Eqs. (A3) - (A4) defines the 

demand of service A when only service A operates on OD 

pair 𝑢𝑤 (𝑑𝑢𝑤
𝐴_𝐴

) and when both service A and B operate on OD 

pair 𝑢𝑤 (𝑑𝑢𝑤
𝐴_𝐴𝐵

), respectively. 
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