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Abstract— Collecting traffic data is crucial for transportation
systems and urban planning, and is often more desirable
through easy-to-deploy but power-constrained devices, due to
the unavailability or high cost of power and network infrastruc-
ture. The limited power means an inevitable trade-off between
data collection duration and accuracy/resolution. We introduce
a novel learning-based framework that strategically decides
observation timings for battery-powered devices and recon-
structs the full data stream from sparsely sampled observations,
resulting in minimal performance loss and a significantly pro-
longed system lifetime. Our framework comprises a predictor,
a controller, and an estimator. The predictor utilizes historical
data to forecast future trends within a fixed time horizon.
The controller uses the forecasts to determine the next optimal
timing for data collection. Finally, the estimator reconstructs
the complete data profile from the sampled observations. We
evaluate the performance of the proposed method on PeMS
data by an RNN (Recurrent Neural Network) predictor and
estimator, and a DRQN (Deep Recurrent Q-Network) controller,
and compare it against the baseline that uses Kalman filter
and uniform sampling. The results indicate that our method
outperforms the baseline, primarily due to the inclusion of more
representative data points in the profile, resulting in an overall
10% improvement in estimation accuracy. The source code is
available at https://github.com/ai4ce/when2see.

I. INTRODUCTION

Over the past few decades, Intelligent Transportation Sys-
tems (ITS) have experienced significant growth and advance-
ment. The remarkable achievements of ITS can be largely
attributed to the development of infrastructure and hardware
for accessing, collecting, and processing real-world data.
Within this context, surveillance cameras have emerged as
a vital and extensively employed element of modern ITS,
particularly due to the rapid progress in video processing and
communication technology. Leveraging the valuable insights
ingrained within high-dimensional image data, the utilization
of collected video-based data presents immense possibilities
for traffic analysis and encompasses various applications,
including the detection of hazardous traffic scenarios such
as collisions [1] and deteriorating road conditions [2], as
well as traffic counting [3] and traffic state estimation [4]. Of
greater significance, video-based data goes beyond extracting
vehicle-related information and allows for capturing data
regarding road users like pedestrians and cyclists, which tra-
ditional vehicle-focused sensors are difficult to provide [5].
This opens up possibilities for various applications residing
in crowd management and public safety, such as social
distancing analysis during COVID-19 [6].
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Among the many effective traffic data-collection systems
that employ surveillance cameras, the Caltrans PeMS1 and
the New York City traffic sensing program2 are two notable
examples, where the Caltrans PeMS system gathers various
real-time highway data, covering an extensive directional
distance of over 41,000 miles, with more than 18,000 stations
and 46,000 detectors, and the New York City traffic sensing
program deploys over 2,000 surveillance cameras positioned
at intersections across the city to monitor urban traffic
conditions. Undoubtedly, these expansive data collection
systems offer the research community and policymakers
access to invaluable data that was previously unavailable.
Nevertheless, we have identified three key challenges in the
existing video-based data collection systems that limit the
general public’s accessibility and hinder the broader impact
of leveraging these advanced technologies in ITS:

• Expensive infrastructure limits the reach of existing
surveillance systems, leaving certain underrepresented
areas, like lower-income neighborhoods, being excluded
from the monitoring and management efforts of trans-
portation agencies.

• The lack of spatial flexibility in infrastructure-based
surveillance systems hampers response to urgent traffic
monitoring demands (i.e., temporary work zones and
special events) and hinders quick evaluation and adap-
tation for expansion requirements.

• The current data collection strategies that depend on
infrastructure and necessitate a stable external power
supply are impractical in situations where power acces-
sibility is not guaranteed.

To address the limitations of hardware and the necessity
for efficient data collection strategies, we present a learning-
based data collection framework that empowers rapidly de-
ployable lightweight devices to perform video-based data
collection and extend their lifespan through the use of battery
power. Specifically, the framework aims to address the inher-
ent trade-off between extending the lifespan of the power-
constrained devices and the resulting performance degrada-
tion caused by prolonged usage. The framework consists of
three modularized components, namely prediction, control,
and estimation. We endorse the concept of predictive control,
wherein the DRQN controller leverages prediction results
from the RNN predictor to actively determine the timing
for the next data collection activity. Additionally, an RNN
estimator is employed to refine the prediction results, aiming
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to minimize the disparity between the obtained and actual
data profiles. The proposed framework is evaluated using
a real-world traffic dataset, demonstrating its superiority
over the baselines. To the best of our knowledge, there are
currently no existing framework-level solutions for enabling
long-term (self-maintained for at least a week) video data
collection in power-constrained contexts.

II. RELATED WORK

In this section, we review the existing work on en-
abling video processing and data collection under power-
constrained schemes, which can be broadly classified into
two categories: (1) reducing the computational load of neu-
ral networks for video processing, and (2) optimizing the
sampling strategies.

Efficient deep network backbone. The progress in
single-board computers has made it possible to run modern
deep learning models on affordable devices equipped with
dedicated GPU (graphics processing unit) or TPU (tensor
processing unit), such as Nvidia Jetson Nano and Google
Coral Dev Board. However, due to the limited onboard RAM
and inferencing capabilities of these edge devices, most
state-of-the-art image processing models (object detection,
object tracking, crowd density estimation, etc.) cannot be
directly deployed, and a significant accuracy drop is observed
if limiting power supply [7]. Numerous efforts have been
made to develop lightweight models for power-constrained
devices. Through the exploration of network parameters such
as depth, width, and resolution, it is possible to reduce the
number of parameters and floating point operations (FLOPs)
while preserving accuracy, as demonstrated in the works
of SqueezeNet [8], GoogleLeNet [9], and EfficientNet [10].
Additionally, MobileNets [11] pioneers the use of depth-wise
separable convolutions to reduce the number of convolution
operations, which has since become a fundamental compo-
nent in subsequent studies.

Adaptive Sampling. Another effective approach is to
conserve power through sparse yet strategic samplings. The
approach known as adaptive sampling, which involves guid-
ing the sampling process in a sequential manner based on
information from previous observations [12]. This allows
for more efficient data collection by focusing resources on
areas of interest or significance, while reducing the sampling
rate in less informative regions. Superior performance com-
pared to conventional (uniform) sampling schemes has been
demonstrated using either filter-based approaches [13][14]
or recent learning-based approaches [15][16]. Adaptiveness
in data sampling can be determined by considering criteria
such as information gain [15] event detection [17], and uncer-
tainties reduction [18]. Signal reconstruction from adaptive
sampling has also been investigated [19][20].

However, our laboratory experiments and the findings
presented in [21], utilizing the Google Coral Dev Board,
demonstrate that no existing lightweight object detection
neural networks can sustain continuous video processing
at a frequency of 30 Hz for more than 48 hours on a
10,000 mAh Li-ion battery, when deployed at a plaza with

moderate pedestrian density. It is worth noting that while
experiments in [22] demonstrate the potential for energy
savings through strategic sensor activation, there is currently
no existing research specifically addressing data collection
using adaptive sampling in the transportation domain.

Acknowledging the limitations and gaps in the existing
literature, we introduce a modularized framework that is
independent of specific video processing methods and offers
flexibility to incorporate various adaptive sampling algo-
rithms. Furthermore, the accuracy of data collection is en-
hanced through post-estimation techniques. This framework
is suitable for various types of traffic data and is designed to
operate on low-cost lightweight devices with limited battery
power resources, like Google Coral Dev Board and Nvidia
Jetson Nano.

III. METHODOLOGY

In this section, we delve into the proposed solution,
including problem definition, framework architecture, and
the design of the framework’s functionality. Throughout the
entire paper, we will treat sampling as making video-based
observations from deep neural networks (e.g., pedestrian
detection and counting) for the sake of simplicity.
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Fig. 1: Workflow of the proposed two-stage framework.

A. Problem statement

This paper addresses the challenge of optimizing the
timing of observations for a lightweight device with limited
battery capacity. We assume that the number of available
observations is proportional to the remaining battery power.
The goal is to allocate observation opportunities in a manner
that maximizes the capture of information and enables the
reconstruction of periods where no observations are made.

We design a two-stage framework. The first stage, re-
ferred to as the ”initialization” phase, involves operating the
device to gather continuous observations within a limited
time period solely for the recording purpose, without any
background algorithm running. The length of this stage is
exclusively determined by the battery capacity and remains
uninfluenced by the particular scenes encountered. In the
second stage, depending on the remaining battery capacity,
the device can either be equipped with a new battery or
continue using the existing one. During this stage, the device
transitions into ”power-saving” mode, strategically making



observations using the previously collected data to extend
its lifespan. The workflow of the proposed framework in this
work can be summarized as depicted in Fig. 1.

1) Prediction: The objective of the prediction module is
to forecast the future based on past observations. Let P
denotes a predictor, Xt represents the data observed at time
t, and X̄t+k denotes the prediction at time t+k. A prediction
task maps K ′ historical data to K future data is given by
Eq. (1).

[Xt−K′+1, · · · , Xt]
P−→ [X̄t+1, · · · , X̄t+K ] (1)

In the context of time progression, accurate prediction is
essential as the available information can become outdated
and biased. This presents challenges for the controller in
making informed decisions. To address this, we utilize an
RNN predictor that is capable of capturing location-specific
patterns, enhancing its sensitivity to the unique characteris-
tics of each location. By incorporating this predictor into our
framework, we aim to improve the accuracy and reliability
of decision-making processes. Let D denote the existing
database generated from infrastructures, and Xh represent
the data collected by the device on-site in the first stage. We
apply conditional training and inference, incorporating Xh

as part of the input, as illustrated in Eq. (2).

[Xt,Xh]
PD

−−→ [X̄t+1, · · · , X̄t+K ] (2)

In this manner, the predictor can utilize both the existing
database D and the local historical data Xh, allowing it
to effectively handle limited on-site data while considering
similarities across locations. We train the RNN predictor
fθpred , parameterized by θpred, to predict the entire future
data profile using Xh as input. The prediction model is
trained using the loss function shown in Eq. 3, where Y
represents the ground truth data to be collected.

L(θpred) =
∣∣∣∣(Y − fθpred(Xh)

∣∣∣∣2
2

(3)

2) Control: In this study, the selection of observation
times is treated as a sequential decision-making problem, as
future state-action pairs are influenced by past decisions. To
incorporate temporal dependencies and find an observation
policy, we employ a Deep Recurrent Q-Network (DRQN),
which combines a Long Short-Term Memory (LSTM) [23]
and a Deep Q-Network, to learn the Q-value function by
integrating information from sequential inputs over time.
Reinforcement Learning [24] is generally defined as a
Markov Decision Process (MDP) problem, denoted by a
tuple {S,A,P,R}. At each step, the agent observes a state
s ∈ S, selects an action a ∈ A, and observes the next state
s′ ∈ S. The reward is determined by the function R(s, a, s′),
which assigns a reward value to the state-action transition. In
the DRQN approach, the Q-function qπ(s, a) ≈ qπ(s, a;θ)
is approximated using neural networks with parameters θ.
The network parameters are optimized by minimizing the
loss function defined in Eq. 4.

L(θ) = E(s,a,r,s′)∼B

[(
y −Q(s, a;θ)

)2]
(4)

Here B denotes the replay memory buffer containing
experience (s, a, r, s′), and y = r + γmaxa′ Q̂(s′, a′;θ−),
where Q̂(s′, a′;θ−) is the output of the target network and
Q(s, a;θ) is the output of the evaluation network.

Our design incorporates the principles of Model Predictive
Control (MPC) [25], although we use a neural network for
prediction instead of a dynamics model. The concept of
conditional training, which is employed in the prediction
module, is also applied here. The detailed design is outlined
as follows:

• State: s = [Xt, X̄(t+1):(t+K), tlocal, tglobal, Oava,X
h],

represents the data collected at time t through obser-
vations, X̄(t+1):(t+K) denotes the prediction from time
t+ 1 to t+K, tlocal indicates the index of the current
time t in each run, tglobal corresponds to the 24-hour
time in the real world, Oava denotes the remaining
observations, and Xh represents the local historical data
collected in the first stage.

• Action: a ∈ {1, 2, · · · ,K}, represents the number of
time steps from the current time t to the next obser-
vation. This choice of action results in a finite action
space, while still providing the flexibility to handle long
time horizons.

• Reward: r(s, a, s′) = −raccuracy − w1 · rsimilarity −
w2 · rwaste, where raccuracy quantifies the prediction
accuracy from time t to the next observation at time
t + a, rsimilarity measures the similarity between the
prediction and the ground truth, rwaste penalizes the
agent for leaving observations unused, and weights w1

and w2 are weights that determine the importance of
each component of the reward.

By employing DRQN, the controller evaluates a sequence
of states leading up to time t, enabling it to ascertain the
best timing for the subsequent observation.

3) Estimation: When the device terminates due to run-
ning out of available observations, the collected data profile
consists of a combination of observed values and pre-
dictions between two consecutive observations, denoted as
X̂ = [· · · , Xai , X̄(ai+1):(ai+ai+1−1), Xai+ai+1 , · · · ], where
ai represents the action taken at each decision iteration
until using up all O observation opportunities, with i =
1, 2, · · · ,O. Given the ground truth of the data to be col-
lected, the estimation becomes a supervised learning problem
aimed at calibrating the prediction using the actual observed
data. In this problem, the input to the estimation model is
the data collected by the device along with the predicted
values between the observed data points, and the label is the
corresponding ground truth. We train another RNN estimator
fθest , parameterized by θest, to perform post estimation with
the collected data. The network is trained using the loss
function shown in Eq. 5, where Y represents the ground
truth of the data to be collected.

L(θest) =
∣∣∣∣Y − X̂

∣∣∣∣2
2

(5)

B. Summary
In this framework, each module plays a distinct role. The

prediction module generates predictions that are incorporated



as part of the state input for the control module. The control
module utilizes this information to make decisions on ob-
servation times. Finally, the estimation module calibrates the
data profile obtained from the control and prediction mod-
ules. Specifically, we employ a predictor based on the RNN
architecture, utilizing fully connected LSTM hidden units.
The design of the predictor follows the Encoder-decoder
framework introduced in [26]. Our DRQN architecture is
based on the design presented in [27]. The estimator shares
the same overall architecture as the predictor.

The energy consumption related to neural network in-
ference depends on how often they are invoked. In this
framework, each module is limited to being called no more
than once per time step, which leads to a minimal energy
impact in comparison to the continuous energy drain caused
by hours of camera recording.

IV. EXPERIMENT

While the primary focus of the proposed framework is on
processing videos obtained from surveillance cameras, it is
also capable of handling low-dimensional time series data
processed from these videos. The framework can effectively
work with various types of time series data, including occu-
pancy, speed, flow, and more. Additionally, it is applicable to
different subjects such as vehicles, pedestrians, and cyclists,
making it versatile for diverse scenarios and domains.

A. Dataset

Due to the lack of video data collected from power-
constrained devices, without losing generality, we adopt a
broader perspective by employing time series data obtained
from the current infrastructure. We treat time series data as
the processed outcomes of raw videos using computer vision
algorithms, e.g., object detection. Traffic3 dataset [28] is used
for experiments, which includes hourly collected of highway
occupancy rates at 861 locations from July 1, 2016, to July
2, 2018, on San Francisco Bay area freeways from PeMS.
This study does not exclusively focus on or confine itself to
highway occupancy data. Instead, it showcases the viability
of the proposed approach for a range of traffic data collection
endeavors, such as collecting pedestrian/cyclist data in urban
neighborhoods. Furthermore, we intentionally retain outliers
in the data to demonstrate the robustness of our models.
The total 861 locations in the data source are randomly
divided into three sets for training, validation, and testing
using a ratio of 0.7:0.2:0.1. The 17,544 data points from each
location are subsequently divided into non-overlapping sub
time series, with each sub-series consisting of 216 data points
(equivalent to 9-day data). We take the first 48 data points
(equivalent to 2-day data) as historical data collected in the
first stage and aim to estimate the occupancy rates for the
subsequent 168 data points (equivalent to 7-day coverage).

B. Settings

We create a demanding scenario where the device has a
limited opportunity to make hourly observations, allowing

3https://github.com/thuml/Autoformer

it to spend at most 1
6 of the total time. This corresponds

to O = 168 × 1
6 = 28 observation opportunities over the

next 7 days. This constraint enables the device to extend its
lifespan by a factor of 6. Following each hourly observation
captured by the onboard camera, the device performs real-
time processing of the raw video data using state-of-the-
art artificial intelligence techniques on-board, such as object
detection. Our objective is to generate accurate descriptions
of the 7-day data based on the limited observations, ensuring
that the final outputs capture the underlying patterns as
effectively as possible.

1) Predictor: As a baseline for the prediction module,
we consider a classical dynamics-based method called the
Autoregressive (AR) model combined with the Kalman filter.
The order selection for the AR model is determined as 4
based on autocorrelation tests. This baseline, denoted as
AR(4)kal, is widely recognized for its effectiveness in time
series forecasting. Our proposed RNN predictor, denoted as
LSTMpred, comprises two recurrent layers with 128 LSTM
units in both the encoder and decoder. LSTMpred is trained
by providing the input data of the first 2 days and predicting
the subsequent 7 days. We apply teacher-forcing tricks [29]
during training, with an initial learning rate of 1e−4.

2) Controller: We pick the uniform observation policy,
where observations are taken at at equal intervals across the
entire time horizon, as the baseline control policy against
the proposed DRQN. In this study, we construct a DRQN
network consisting of three fully connected layers, followed
by a recurrent layer, and another fully connected layer that
maps the hidden states to the action space. We set the
prediction window K = 12, length of history state-action
pair stored in the memory replay buffer Lm = 12, and
the size of replay buffer B is 5,000. The exploration rate
ϵ decays from 1 to 0.1. The reward function calculates
raccuracy = 1

a

∑a
i=1 ∥X̄

t+i
pred − Xt+i

gt ∥2, and rsimilarity =

DTW (X̄t+1:t+a, Xt+1:t+a)gt is calculated using Dynamic
Time Warping [30] implemented by tslearn package. The
last term for unused observations is calculated as runused =
O − OT

ava, where O is the total available number of ob-
servation hours at the beginning and OT

ava is the number
observation hours available at the end of the desired lifespan
T . Additionally, we set w1 = 1 and w2 = 10.

3) Estimator: Two estimation methods are considered
in the experiments: (1) Gaussian process regression (GPR)
implemented using SciPy package; (2) Recurrent Neural
Network, LSTMest, which shares the same architecture
as LSTMpred but with an input layer dimension of 216
(48+168) and hidden layers of 256.

4) Baselines: To evaluate the effect of three modules,
we put forward three baseline configurations, including (1)
Uniform + GPR: Uniform observation policy and GPR esti-
mator; (2) Uniform + LSTMest: Uniform observation policy
and the LSTM-based estimator; (3) AR(4)kal + Uniform +
LSTMest: the predictor is an Auto-Regressive model with
a Kalman filter, combined with the Uniform observation
policy and the LSTM-based estimator. We will compare the
baseline configurations with our proposed configuration of

https://github.com/thuml/Autoformer


TABLE I: Performance comparison for traffic occupancy rate data collection. Our proposed learning-based configuration
achieves the best performance in all metrics and much better generalization compatibility. ↑: the higher the better, ↓: the
lower the better.

Metric Uniform+GPR Uniform+LSTMest AR(4)kal+Uniform +LSTMest LSTMpred+DRQN+LSTMest

RMSE (↓) a 0.0318 0.0223 0.0223 0.0212
MAE (↓) a 0.0176 0.0119 0.121 0.0115

MAPE (↓) b 74.0% 60.7% 63.0% 53.3% (-12.20%)
Coverage (↑) a 1.512 1.512 1.512 1.721 (+13.82%)

aevaluated including missing data; bexcluded zero values

LSTMpred + DRQN + LSTMest. Input data for all modules
in all experiments are normalized in the same magnitude.

C. Long-term data collection performance comparison

Table I shows the comparison of different configurations.
They are evaluated based on three commonly used metrics
for accuracy metrics, as well as a novel metric that is specifi-
cally relevant to the transportation community, including: (1)
Mean Absolute Error (MAE), (2) Mean Absolute Percentage
Error (MAPE), and (3) Root Mean Squared Error (RMSE),
and the last metric (4) Coverage: this metric represents
the cumulative sum of all observed values, reflecting the
intuition that a higher quantity of content in observations
can potentially yield more valuable information. All data,
including missing (zeros) values, are used in calculating these
metrics, with the exception of MAPE for numerical reasons.

Fig. 2: Prediction of AR(4)kal and LSTMpred following Uni-
form observation policy. LSTMpred can work with historical
data that will fail AR(4)kal.

Our proposed configuration consistently outperforms the
other configurations across all metrics, indicating the effec-
tiveness of our framework and the chosen configuration (Fig.
3). Throughout the experiments, we observed that although
AR(4)kal generally performs satisfactorily, it can encounter
significant errors or even fail in certain instances where the
historical data used to fit the AR model deviates significantly
from the actual data. This discrepancy can lead to exag-
gerated errors and ultimately cause the DRQN controller to
fail due to numerical issues in loss backpropagation. Fig. 2
demonstrates a specific example where the combination of
AR(4)kal and the Uniform policy fails to produce meaningful
results. This type of failure is not acceptable in the context of

long-term data collection, regardless of its low probability, as
real-world data cannot always be assumed to be stationary.
In contrast, our learning-based predictor, LSTMpred, shows
robustness in scenarios where AR(4)kal fails. The failure
cases encountered in the AR(4)kal + Uniform + LSTMest

configuration can provide insights into why it performs even
worse than its variant without the AR(4)kal predictor, as
these failure cases may have contaminated the estimator’s
parameters with extremely high loss values. This highlights
the significance of the prediction module in determining the
overall performance evaluation.

D. Effect of control policy and estimation

In order to better understand the impact of the control
policy and the estimator, we conducted two sets of ablation
studies, and the experiment settings are as follows:

• LSTMpred + DRQN v.s. LSTMpred + Uniform.
• LSTMpred + DRQN + LSTMest v.s. LSTMpred +

Uniform + LSTMest.
Table II shows the comparison between the configurations

of LSTMpred + DRQN and LSTMpred + Uniform. It can
be observed that DRQN results in better performance in all
metrics due to its ability to actively search for the optimal
observation time that minimizes the prediction error. An
illustrative example depicted in Fig. 4 shows that DRQN
tends to make observations at points where the prediction
errors are either significant at the current step or total devi-
ation in the future, such as peaks or bottoms. This efficient
utilization of observations helps minimize errors stemming
from predictions and consequently enhances overall accuracy
performance.

TABLE II: Performance comparison for using predictor and
controller only.

RMSE a MAE a MAPE b Coverage

LSTMpred+DRQN 0.0282 0.0156 120.4% 1.721
LSTMpred+Uniform 0.0320 0.0182 149.0% 1.512

aevaluated including missing data; bexcluded zero values

TABLE III: Performance comparison of DRQN and Uni-
form control policy given the predictor and estimator using
LSTMpred and LSTMest.

RMSE a MAE a MAPE b Coverage

DRQN 0.0212 0.0115 53.3% 1.721
Uniform 0.0216 0.0122 56.1% 1.512

aevaluated including missing data; bexcluded zero values



Fig. 3: The proposed LSTMpred+DRQN+LSTMest configuration predicts the start and end of the peak hours. It can generate
smooth predictions even without new observations.

Fig. 4: Observations are strategically taken either when there
is a significant prediction error or at representative points,
such as peaks.

The impact of incorporating the estimation module is
shown in Table III. It is observed that DRQN continues to
outperform Uniform in the majority of metrics, although the
performance gap narrows down, which means LSTMpred +
Uniform + LSTMest gains more improvement by adding the
estimator. To investigate why the addition of an estimator has
a milder impact on the performance of DRQN compared
to the Uniform policy, we visualize the action distribution
obtained using DRQN, as depicted in Fig. 5. It reveals
that, firstly, the allocation of observations per day decreases
progressively over time, indicating that the DRQN controller
assigns greater importance to the initial days compared to the
later ones. This can be attributed to the fact that a general
LSTM predictor has the ability to quickly learn location-
specific patterns. Therefore, having more observations during
the initial days facilitates faster adaptation to the local data
patterns and improves the prediction accuracy for the far
future. One consequence is that as the predictor becomes
increasingly accurate and calibrated with the observations
from the initial days, it requires fewer observations for
reliable predictions. This could be one of the reasons why

Fig. 5: The distribution of observations allocated in each day
by the DRQN controller. The y-axis represents the ratio of
the number of observations assigned at a specific time to the
total number of test instances. Each day starts at 0:00 and
ends at 23:00.

Uniform observations show greater improvements compared
to DRQN after adding the estimator: Uniformly distributed
observations provide guidance throughout the entire time
horizon, while DRQN observations are concentrated in the
initial days and may not contribute significantly to the
estimation towards the end of the time horizon.

Secondly, the distribution of observations within each day
exhibits a two-peak pattern, suggesting a higher likelihood of
observations being allocated to morning and afternoon peak
hours. Remarkably, the DRQN controller learns this behavior
without any explicit guidance from the reward function.
This demonstrates the ability of DRQN to identify crucial
time intervals for maximizing performance metrics such as
accuracy and information coverage, resulting in improved
outcomes. Another notable finding is that while the estimator
module appears to have the most significant impact on
improving accuracy performance compared to the other two
modules, we believe that these three modules should function
together as a cohesive system, and controllers like DRQN can



bring benefits not only to accuracy but also to implicit utility
in domain-specific metrics, such as information coverage in
transportation.

V. CONCLUSION

This paper presents a modularized framework designed
to facilitate long-term data collection on power-constrained
devices. By integrating prediction, control, and estimation
modules, the framework effectively extends the device’s
lifespan while maintaining reasonable performance. Real-
world data experiments indicate the effectiveness of the
proposed framework and its configuration. The effect of each
module is thoroughly examined and analyzed. Future work
involves testing the framework in complex urban scenarios
and conducting field experiments for real-world validation.
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