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Abstract— This study aims to address the challenges of
automatically recognizing and sizing work zones in complex
urban environments. We developed a deep-learning based work
zone object detection model with a data-centric approach to
iteratively enhance the model’s performance by augmenting a
custom training dataset collected from multiple sources, thereby
overcoming the sparsity of annotated real-world work zone
images. The training data is acquired from traffic cameras,
mined from the web, and 3D-simulated work zone images.
An innovative topology-based inference method is introduced,
using XGBoost, for distinguishing true work zones from non-
work operational zones with some work zone features. We also
developed a reference-free work area size estimation method,
which utilizes the standard heights of common construction
equipment to provide a generalized real-pixel distance approx-
imation. Our model’s efficacy is demonstrated with an average
mAP of 74.1% across all work zone classes, an accuracy
of 98.4% for scene identification, and an accuracy of up to
89.52% for size estimation. Overall, our proposed approach
significantly advances the capabilities of automated urban work
zone detection and sizing, offering a cost-effective method to
fill in the gap for the acquisition of work zone data in real-time
by leveraging existing camera infrastructure.

I. INTRODUCTION

The occurrence of work zone activities within highway
networks and urban roadways can induce substantial traffic
interruptions. These operational disruptions often result in
roadway capacity reduction (i.e., by closing down one or
more lanes) that might lead to severe congestion and roadway
crashes. On the one hand, work zones have contributed to
approximately ten percent of highway congestion in the U.S.,
resulting in an estimated annual loss of $700 million in
fuel alone [1], while exacerbating the negative environmental
effects of vehicle emissions and increasing safety risks [2].
For example, one study found that the crash rate increased
by 24.4% under work zone conditions compared to non-work
zone conditions [3]. On the other hand, while offline data
sources such as work zone permit data may be available,
the majority of U.S. cities have yet to establish a real-
time approach to monitor actual activities during operational
periods of work zones throughout the road network.

Given these concerns, real-time work zone detection be-
comes crucial. Knowing the location, duration, size of the
work zones in real-time can provide vital insights into their
impact on traffic flow and safety and help decision makers
strategically allocate resources through the Transportation
Management System (TMS).
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One viable approach to detecting work zones in real-time
is using vision-based detection by means of existing traffic
cameras. While these traffic cameras are extensively used
for pedestrian and vehicle detection, their application to road
work zone detection, especially in complex urban settings,
remains limited. Urban work zones are uniquely challenging
due to pedestrian and vehicular activities, complex surround-
ings, and lack of standardized setups.

The majority of existing studies using computer vision
for work zones focus on off-street sites that might employ
different types of equipment than those seen in roadside work
zones, or they concentrate solely on detecting a single type
of work zone component (e.g., traffic cones) [4]. Moreover,
the mere recognition of work zone equipment does not
necessarily confirm the presence of a work zone, as such
equipment can sometimes serve other purposes, including
regulating traffic (e.g., using barrels to separate traffic lanes).
Consequently, there is a need for a new methodology that
identifies work zone scenes in their entirety rather than
simply detecting individual pieces of some work zone equip-
ment.

Additionally, most of the existing Artificial Intelligence
(AI) applications adopt model-centric approaches wherein
data collection is perceived as a one-time event to improve
the model architecture to enhance its performance [5]. How-
ever, given the inherent scarcity of open-source training
samples for work zone detection, the current limitation in this
domain is the lack of data rather than shortcomings in the
model. This constrains the development of computer vision
algorithms for this specific problem, which typically require
substantial amounts of data.

In this paper, we introduce a deep learning based frame-
work to effectively recognize urban work zone scenes and
their sizes. The main contributions of this research are
summarized as follows:

• We propose a data-centric training approach designed to
iteratively improve the performance of work zone object
detection by augmenting a customized training dataset
fused from multiple data sources to overcome the spar-
sity of annotated real-world work zone images. These
sources include 2,600 images with 15,000 work zone
object labels from traffic cameras, web-mined images,
and synthetic work zone images generated through a 3D
simulator.

• We implemented a topology-based inference method
using XGBoost to automatically identify work zone
scenes. This innovative approach is designed to deal
with the complexities of work zone scene detection



caused by the fact that recognizing individual or certain
combination of work zone components alone (e.g., a
traffic cone behind a car) may not necessarily represent
a true work zone.

• We developed a reference-free work zone size esti-
mation method, which utilizes the standard heights of
common work zone equipment, to provide a generalized
real-pixel distance rate method.

II. RELATED WORKS

A main challenge for work zone detection identified
throughout the literature is the scarcity of publicly available,
large-scale, domain-specific, annotated datasets of work zone
imagery [4], [6], [7]. For example, Nath and Behzadan [6]
used a CNN model that laid out a framework for detecting
the most common types of off-street construction objects,
namely, buildings, equipment, and workers. They recognized
the lack of publicly available annotated work zone imagery
dataset and introduced a systematic approach to visual data
collection through crowd sourcing and web-mining and
annotating the collected dataset for AI model training to
overcome the limitation. They collected 3,500 images with
11,500 work zone elements and tested both YOLO-v2 and
-v3, achieving a best-performing model with a 78.2% mAP.

Duan et al. [7] also stated that the lack of large-scale,
open-source dataset for the construction industry limited the
development of computer vision algorithms as they are often
data-hungry. This study developed a new large-scale work
zone image dataset, Site Object Detection dAtaset (SODA),
with a total of 19,846 images and achieved a maximum mAP
of 81.47%. The limitation of this dataset is it is mainly for
off-street work zones and may not be suitable for detecting
work zones that occur on the roadways.

Another study conducted by Katsamenis et al. [4] used
Yolov5 for traffic cone detection using a training dataset
of 500 traffic cones images. The data used in this paper
was collected and manually annotated under the framework
of the H2020 HERON project. The results showed that
the proposed computer vision model could achieve a 91%
accuracy in detecting traffic cones. However, work zones,
especially urban work zones often composed by multiple
types of construction objects and have no standard work zone
set up, single object type detection may not be as effective
as expected in such cases.

Given these research gaps, there is a need to construct
a data-centric approach for automated urban work zone
detection, which allows continuous improvement of training
data in terms of work zone imagery, as well as an effective
recognition method capable of identifying complex urban
work zone scenes, rather than focusing solely on individual
work zone components and /or construction equipment.

III. METHODOLOGY

The emerging field of Data-Centric AI is anticipated to
introduce techniques for dataset optimization, thus enabling
detection algorithms to be effectively trained even with
relatively small datasets [5]. In this paper, we propose

a data-centric framework for urban work zone detection
and sizing which contains three modules: 1) a data-centric
training that systematically augments training datasets
with the goal of enhancing the accuracy of the work zone
detection model, 2) a topology-based work zone scene
inference that can identify work zones by understanding
the positional relationships and connections among detected
work zone objects (e.g., cones placed adjacent to a line
of fences), and 3) a reference-free estimation for work
zone size. We describe each part of the proposed detection
methodology in the following sections. Fig. 1 shows the
working flow of the proposed method.

Data-Centric Training for Work Zone Object Detection:
We begin with collecting a customized dataset of 2,600
work zone images with about 15,000 labels from diverse
sources including CCTVs, web-mined images, and a 3D
simulator, offering a wide array of work zone scenarios
(Fig. 1). This model is designed to identify several key work
zone objects, such as traffic cones, construction workers
and vehicles. Web-mined and 3D synthetic images primarily
serve to fill the gaps in certain subcategories of the training
data, which may be sparse in the CCTV images, yet their
detection accuracy is vital for the model. For instance,
web-mining is a good supplemental source for augmenting
training images for construction vehicles. The quality of the
data was incrementally improved by correcting label errors
and pruning noisy labels based on data quality objectives.

Topology-Based Work Zone Scene Inference: Once work
zone objects are identified, their topological arrangement is
analyzed. We calculate a topology complexity score based
on the positional relationships and connections among
these objects. The score serves as an indicator of whether
the scene represents an organized work zone or a random
accumulation of work zone objects for non-work zone
purpose. The score is then fed into a XGBoost classifier,
which is trained on ground truth work zone scene data.

Reference-Free Work Zone Size Estimation: After the
presence of a work zone is confirmed, an estimation
algorithm is performed to approximate the size of the work
zone. This is accomplished using a reference-free method,
which utilizes the standard heights of common work zone
equipment to establish a scale. With this scale, the distances
and sizes of the work zone scene can be inferred, allowing
for the estimation of the work zone’s size.

A. Data-Centric Training Pipeline

The key of work zone detection and sizing lies in ac-
curately recognizing work zone-related objects. For the pur-
poses of this study, we focus on seven key objects, including
traffic cones, barricades, barrels, chain fences, construction
vehicles, signs, and workers. The YOLOv8 model that in-
tegrates cutting-edge backbone and neck architectures with
the mosaic augmentation method is used as it enhances



Fig. 1. Flowchart for the urban work zone detection and sizing.

both feature extraction and object detection, compared to
previous YOLO versions [8]. Given the absence of a pre-
trained YOLOv8 model tailored to our needs due to the lack
of publicly available labeled roadway work zone data, we
curated and manually labeled our own training set featuring
work zone objects from the sources described in Fig. 1.

Data-centric model training recognizes that quality data is
key to achieving better model performance, especially when
dealing with real-world scenarios that are diverse and often
unpredictable. Consider the objective of data-centric training
in a simplified manner. Assume that we have a model,
defined by its parameters θ, and a dataset D = (xi, yi),
where xi is an instance (image in our case) and yi is the
corresponding label. In the typical model-centric training,
we want to find optimal parameters θ∗ that minimize a loss
function L, averaged over all instances in the dataset:

θ∗ = argminθ
1

N

∑
L(yi, f(xi; θ)), for all i in D (1)

Where f(xi; θ) is the output of the model given instance xi

and model parameters θ.
In contrast, for the data-centric training, we recognize that

our dataset D itself might be sub-optimal, due to label errors
or lack of image diversity. We hence introduce a notion of
”dataset quality” q(D), which outlines how good our data
is. The goal then becomes to optimize not just the model
parameters θ but also the dataset D itself:

(θ∗, D∗) = argminθ,D
1

N

∑
L(yi, f(xi; θ))− λ∗q(D),

for all i in D
(2)

Here, λ is a regularization parameter balancing model loss
and data quality. Enhancing dataset D might include cor-
recting labeling errors, ensuring data representation, and
introducing edge cases for model generalization.

In this study, we refined the dataset based on model
performance, adding data and correcting/pruning label errors
specifically for subclasses falling short of desired accuracy.
The data-centric training pipeline is illustrated in Fig. 2.

Fig. 2. Data-Centric training pipeline.

B. Topology-based Work Zone Inference using XGBoost

We introduced an innovative topology-based work zone in-
ference using XGBoost to reliably identify work zone scenes
under real-world conditions. Instead of relying solely on the
presence of work zone objects, this methodology considers
their arrangement and inter-connectedness within the work
zone. A topology complexity score is derived from these
detected objects, illustrating their layout complexity. Work
zone objects are clustered using a density-based clustering
algorithm, DBSCAN [9]. Any cluster with fewer than three
items is considered as noise (i.e., non-work zone).

The topology complexity score views the detected work
zone as a graph. From any random vertex, the algorithm
searches for the nearest vertex with a degree less than two,
then adds an edge between them. This process is repeated
until every vertex in the graph is connected, and no vertex
has a degree greater than two. The complexity is measured by



the features of the generated graph, including the number of
edge cross points, the ratio of cycles to chordless cycles, and
the length distribution of edges. These measurements then
serve as input variables in XGBoost, a gradient-boosting al-
gorithm known for its efficiency and performance. XGBoost
is used as the classifier to identify whether a certain scene
represents a work zone or not. The classifier training uses
manually annotated ground truth data from traffic cameras.
The detailed algorithm is provided in the Algorithm 1.

Algorithm 1 Topology Complexity Score
Require:

1: Initialize a list of qualified clusters Cq from the results
of DBSCAN consists with C.

2: Initialize an empty Graph G(V,E).
3: Initialize a list of available vertices Va consists with all

vertices va in G having a degree less than or equal to 1.
4: N is the total number of vertices in C, n is the total

number of vertices in G.
5: Original Vertex: vo; Destination Vertex: vd; Number of

cycles: Nc; Number of chordless cycles: Nch; Number
of crossing edges: Nce

6:
7: for each cluster C in Cq: do
8: for Each vertex v in C do
9: while n < N : do

10: if G = ∅ then
11: vo ← v
12: else if Degree of vd ¡ 2 then
13: vo ← vd
14: else
15: vo ← ∀v ∈ Va

16: end if
17: if Va has more than two vertices then
18: Find the nearest va and set it as vd
19: add an edge between vo and vd
20: update G and Va

21: else if Va has only two vertices then
22: Set the last va other than vo as vd
23: Add an edge between vo and vd
24: Update G and Va

25: end if
26: end while
27: Calculate Nc, Nch, Nce and the length of edges

in G, store these attributes.
28: end for
29: Final graph Gf ← argminNc(G)
30: Obtain topology scores from Gf

31: end for

C. Reference-free Work Zone Size Estimation

To overcome variance in camera positioning and per-
spective, we suggest a reference-free methodology for work
zone size estimation, based on standard heights of common
work zone equipment such as traffic cones. This method,
initially proposed from our previous work [10] for pedestrian

detection, eliminate the need for a physical scale reference in
the scene which usually requires on-site human investigators.

The reference-free method divides the image into several
hyper-planes, oriented perpendicularly to the horizontal plane
and vanishing lines. Due to perspective effects, each hyper-
plane exhibits a unique real-to-pixel distance ratio (RP-rate)
as the number of pixels corresponding to a given real-world
length varies between hyper-planes. Next, we propose that
each specific type of work zone equipment in the image
stands perpendicular to the horizontal plane and maintains a
uniform actual height hr. Fig. 3 provides an example illus-
trating the proposed area estimation method. Subsequently,

Fig. 3. Proposed work zone size estimation method.

the detected object (vertex) is ranked according to the RP
rate, and one edge is then added to the adjunct vertices.
Combining the final graph Gf generated from Algorithm 1
and removing the duplicated edges, a set of sub-cycles are
generated. The calculation of the real distance is considered
as the integration of the product between RP-rate and pixel
distance ∆p [10]. Similarly, the real area size of each
chordless cycle can be formulated as the integration of
the product between RP rate and the pixel area size ∆s.
Given that each cycle comprises at least three vertices, it’s
straightforward to divide a cycle into sub-cycles between two
neighboring vertices using a supplementary vertical line. A
horizontal line is added from each vertex inside the generated
work zone area, and then the area is separated into sub-
region (SC1 to SC3 in Fig. 3). Each sub-region is considered
as many small rectangles, and the length of the rectangle
is the real distance between the region’s bounds, l, which
can be calculated using the pixel distance multiplied by the
RP rate. The rectangle width is calculated using the method
introduced in [10] due to the perspective effect. Thus, each
sub-region can be calculated as a double integral that is
written as:

ASC =

∫ b

a

∫ rb

ra

lr dldr (3)

where the a and b are the two vertices, la and lb are the
horizontal distance between the work zone bounds at vertex
a and b; ra and rb are the RP rates of vertex a and b, which
can be calculated as follow:

riRP =
hr

hi
p

(4)



where hi
p is the pixel height of the detected equipment, and

hr is the real height of the equipment type. In this study, the
height of a barrel, a cone and a barricade is assumed to be
37, 28, and 42 inches, respectively.

IV. EXPERIMENTS AND RESULTS ANALYSIS

To prove the effectiveness of our proposed framework
in urban work zone detection, we evaluated the detection
model performance using precision-recall (PR) curve and
Mean Average Precision (mAP) over IoU 0.5 (mAP@0.5)
based on different training datasets. Then, we assessed the
performance of the work zone scene identification and size
estimation based on confusion matrix, accuracy and F1 score.

A. Work zone object detection model performance

Our training data primarily derives from a subset of
the 900+ fixed CCTV traffic cameras in New York City
(nyctmc.org), providing a variety of urban work zone im-
ages under different lighting, weather, and traffic conditions,
although with relatively low resolution (i.e., 240p). Free
stock images sourced from the web and synthetic images
from a 3D simulator are also incorporated as supplement
data sources in addition to the CCTV images. The free
stock images provide high-resolution depictions of specific
classes, such as construction workers or vehicles, while
the 3D simulator generates synthetic work zone images
from various angles and work zone setups under controlled
conditions. This approach bridges gaps in areas where real-
world data may be scarce. For instance, if there are few
examples of night-time work zones in the actual data, these
scenarios can be simulated in 3D. This ensures the data-
centric training dataset comprehensively covers all possible
scenarios, a crucial aspect for training a robust model.

Among the 2,600 images collected and annotated, 890
CCTV, 850 stock, and 280 synthetic 3D images were used
as the training data, and 580 CCTV images were used as
the test/validation data. We used the YOLOv8 as our model,
trained on four customized training models for 300 epochs,
and evaluated on the test set. The four training models
are: 1) baseline model uses original CCTV data without
data-centric processing, 2) DC-CCTV uses CCTV data with
data-centric processing, 3) DC-CCTV+Stock uses CCTV and
free stock data with data-centric processing, and 4) DC-
CCTV+Stock+3D uses CCTV, free stock and synthetic 3D
data with data-centric processing.

Fig.4 displays the PR curve resulting from different train-
ing model combinations. The performance, compared to the
baseline, saw substantial improvement after implementing
data-centric training in DC-CCTV, which included data
cleaning and re-labeling. Furthermore, when additional data
sources were added to the training data pool, overall model
performance increased due to data enhancement processing
(Fig.4 (c) and (d)), especially for subclass barricade, con-
struction vehicle, work zone sign, and chain fence. Table I
presents the mAP@0.5 scores for each work zone object
class. Interestingly, a marginal decline is observed in per-
formance for certain specific types upon data augmentation.

A possible explanation is that the inclusion of stock and
synthetic 3D images broadened the model’s generalization
thus reduced the risk of overfitting.

TABLE I
TRAINING PERFORMANCE COMPARISON

Detection Base Data-Centric Training
Type CCTV CCTV CCTV+Stock CCTV+Stock+3D

barricade 0.572 0.644 0.680 0.725
worker 0.516 0.610 0.620 0.579

const. veh 0.272 0.675 0.700 0.737
cone 0.692 0.755 0.773 0.764
barrel 0.830 0.871 0.882 0.872
sign 0.424 0.750 0.727 0.799

chain fence 0.291 0.655 0.680 0.713
ALL 0.514 0.708 0.723 0.741

All values are mAP@0.5

B. Work zone scene identification model performance

For XGBoost training, we selected 684 CCTV images,
399 containing unique work zones and 285 containing work
zone objects that do not constitute work zones (e.g., cones
for lane control). Features like work zone shape, equipment
count, number of crossing edges, the ratio of the cycle over
the chordless cycle, and the number of edge outliers were
manually labeled for model training. We tested the trained
model on 853 CCTV images, with the confusion matrix
presented in Table II. Upon analyzing the confusion matrix,

TABLE II
WORK ZONE DETECTION CONFUSION METRICS

True WZ Trun Non-WZ
Predicted WZ 15 5

Predicted Non-WZ 7 826
WZ: Work Zone

it is noted that the accuracy of the model is 98.4%, whereas
the F1 score stands at 0.713. The discrepancy between these
metrics can largely be attributed to the skewed distribution
of the dataset, where the majority of data points are not
associated with a work zone. Despite the inherent bias
indicated in the F1 score, the results showcase practical
applicability and offer satisfactory performance in real-world
contexts.

C. Work zone size estimation model performance

Figure 5 presents illustrative examples of work zone in-
ference and area estimation. The first two images accurately
identify work zones and their sizes, while the last two
images avoid false positives despite the presence of work
zone equipment. This demonstrates our model’s accuracy
even in complex environments. We evaluated our method
using ten real-world images, manually estimating work zone
sizes via satellite images. The method achieved an accuracy
within a range of 67.71% to 89.52%. The processing duration
for an individual image spans from 3 to 15 milliseconds,
considering input images with dimensions of 640 × 640
pixels.



Fig. 4. PR curve of model validation from baseline model and data-centric (DC) trained models using different training data sources combinations.

Fig. 5. Output of work zone detection, inference, and area estimation. The
top two images highlight detected work zones in orange, with estimated
sizes at the bottom right. The bottom two images show correct detection of
non-work zones that contain work zone equipment.

Nevertheless, the area estimation methodology comes with
certain limitations that demands future work. First, it func-
tions optimally when the identified boundary equipment
forms a closed enclosure. Further improvement is needed
for work zones that utilize natural boundaries such as road
curbs or walls in addition to typical enclosures like barrels or
cones. Also, the reference-free estimation approach assumes
uniform heights for each object type, which could introduce
bias if actual sizes deviate.

V. CONCLUSION

In this study, a multi-facet framework for work zone
detection was introduced, integrating data-centric AI train-
ing, topological analysis, gradient boosting classification,
and reference-free size estimation. Through iterative data
improvement, label correction, and an innovative topology-
based inference method, the approach enables precise work
zone scene identification. The individual accuracy and ro-
bustness of each module were validated through several
experiments.

In summary, the proposed holistic approach, empirically
validated in NYC, enables real-time work zone identifica-
tion and size estimation in complex urban environments. It
promises more informed work zone management, improving

safety and mobility, and offers a cost-effective mechanism for
remote data generation. Future plans include integration with
traffic and incident detection and work zone permit databases
to enhance Transportation Management Systems (TMS).
However, limitations in detecting certain work zones, over-
sensitivity to specific elements, and the need for topology-
based inference tuning must be addressed in future research
to fully realize the algorithm’s potential.
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